-
ASEE 20232023The majority of students who choose to major in engineering do so to become a part of the community of practice of professional engineers (Johri & Olds, 2011), meaning that they want to have adequate exposure to what a career as a professional engineer could potentially be as part of their college experience. However, according to Jonassen (2014), engineering graduates are not well trained to contribute
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT)2023Network interference, where observed outcomes are influenced by interaction with nearby units, is a fundamental issue in A/B testing and experimentation in social and economic networks. Clustered randomization is a frequently-used strategy that aims to prevent confounding by limiting interaction between treated and untreated units. We study a model of least-squares estimation under network interference,
-
AERA 2023 Workshop on Multimodal Literacy in OST Programs: Family and Community Ties2023Computer science (CS) is special among STEM subjects: it aims at an industry sector that has the most job growth but has a constant shortage in the workforce; it is a relatively young and burgeoning subject in K-12 education that has a shortage of classroom teachers; and it is one of a very few STEM subjects that large number of students can master by learning it completely out-of-school. To inspire the
-
Statistical Science2023Classical Randomized Controlled Trials (RCTs), or A/B tests, are designed to draw causal inferences about a population of units, for example, individuals, plots of land or visits to a website. A key assumption underlying a standard RCT is the absence of interactions between units, or the stable unit treatment value assumption (Ann. Statist. 6 (1978) 34-58). Modem experimentation, however, is often conducted
-
Theoretical Economics2023In order to identify expertise, forecasters should not be tested by their calibration score, which can always be made arbitrarily small, but rather by their Brier score. The Brier score is the sum of the calibration score and the refinement score; the latter measures how good the sorting into bins with the same forecast is, and thus attests to “expertise.” This raises the question of whether one can gain
Related content
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
-
May 21, 2025By combining surveys with ads targeted to metro and commuter rail lines, Amazon researchers identify the fraction of residents of different neighborhoods exposed to the ads and measure ad effectiveness.
-
December 16, 2024In a keynote address at the latest Amazon Machine Learning Conference, Amazon academic research consultant, Stanford professor, and recent Nobel laureate Guido Imbens offered insights on the estimation of causal effects in “panel data” settings.
-
October 21, 2024Causal machine learning provides a powerful tool for estimating the effectiveness of Fulfillment by Amazon’s recommendations to selling partners.
-
April 30, 2024Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.
-
March 21, 2024The principal economist and his team address unique challenges using techniques at the intersection of microeconomics, statistics, and machine learning.