View of one of the Amazon Spheres and an office tower at Amazon's headquarters in Seattle, WA, USA.

Publications

Amazon is a great place to practice science and have real business impact, but that’s only one part of the story. Our scientists continue to publish, teach, and engage with the worldwide research community.
1,626 results found
  • Priyanka Sen
    COLING 2020
    2020
    Speech disfluencies have been hypothesized to occur before words that are less predictable and therefore more cognitively demanding. In this paper, we revisit this hypothesis by using OpenAI’s GPT-2 to calculate predictability of words as language model perplexity. Using the Switchboard corpus, we find that 51% of disfluencies occur at the highest, second highest, or within one token of the highest perplexity
  • Yichao Lu, Philip Keung, Julian Salazar, Noah Smith
    Transactions of the Association for Computational Linguistics
    2020
    We describe an unsupervised method to create pseudo-parallel corpora for machine translation (MT) from unaligned text. We use multilingual BERT to create source and target sentence embeddings for nearest-neighbor search and adapt the model via self-training. We validate our technique by extracting parallel sentence pairs on the BUCC 2017 bitext mining task and observe up to a 24.5-point increase (absolute
  • Mingda Li, Xinyue Liu, Weitong Ruan, Luca Soldaini, Wael Hamza, Chengwei Su
    COLING 2020
    2020
    Currently, in spoken language understanding (SLU) systems, the automatic speech recognition (ASR) module produces multiple interpretations (or hypotheses) for the input audio signal and the natural language understanding (NLU) module takes the one with the highest confidence score for domain or intent classification. However, the interpretations can be noisy, and solely relying on one interpretation can
  • This paper addresses the question as to what degree a BERT-based multilingual Spoken Language Understanding (SLU) model can transfer knowledge across languages. Through experiments we will show that, although it works substantially well even on distant language groups, there is still a gap to the ideal multilingual performance. In addition, we propose a novel BERT-based adversarial model architecture to
  • Varun Nagaraj Rao, Mingwei Shen
    COLING 2020
    2020
    Misspellings are introduced on products either due to negligence or as an attempt to deliberately deceive stakeholders. This leads to a revenue loss for online sellers and fosters customer mistrust. Existing spelling research has primarily focused on advancement in misspelling correction and the approach for misspelling detection has remained the use of a large dictionary. The dictionary lookup results
  • Kshitij Tayal, SAURABH AGRAWAL, Nikhil Rao, Xiaowei Jia, Karthik Subbian, Vipin Kumar
    COLING 2020
    2020
    Short text classification is a fundamental problem in natural language processing, social network analysis, and e-commerce. The lack of structure in short text sequences limits the success of popular NLP methods based on deep learning. Simpler methods that rely on bag-of-words representations tend to perform on par with complex deep learning methods. To tackle the limitations of textual features in short
  • Joseph Fisher, Arpit Mittal, Dave Palfrey, Christos Christodoulopoulos
    EMNLP 2020
    2020
    It has been shown that knowledge graph embeddings encode potentially harmful social biases, such as the information that women are more likely to be nurses, and men more likely to be bankers. As graph embeddings begin to be used more widely in NLP pipelines, there is a need to develop training methods which remove such biases. Previous approaches to this problem both significantly increase the training
  • Saurabh Kulshreshtha, José Luis Redondo García, Ching-Yun Chang
    EMNLP 2020
    2020
    Multilingual BERT (mBERT) has shown reasonable capability for zero-shot cross-lingual transfer when fine-tuned on downstream tasks. Since mBERT is not pre-trained with explicit cross-lingual supervision, transfer performance can further be improved by aligning mBERT with cross-lingual signal. Prior work proposes several approaches to align contextualised embeddings. In this paper we analyse how different
  • EMNLP 2020 Workshop on Structured Prediction for NLP
    2020
    Modern conversational AI systems support natural language understanding for a wide variety of capabilities. While a majority of these tasks can be accomplished using a simple and flat representation of intents and slots, more sophisticated capabilities require complex hierarchical representations supported by semantic parsing. State-of-the-art semantic parsers are trained using supervised learning with data
  • Dejiao Zhang, Ramesh Nallapati, Henghui Zhu, Feng Nan, Cicero Nogueira dos Santos, Kathleen McKeown, Bing Xiang
    Findings of EMNLP 2020
    2020
    Unsupervised domain adaptation addresses the problem of leveraging labeled data in a source domain to learn a well-performing model in a target domain where labels are unavailable. In this paper, we improve upon a recent theoretical work (Zhang et al., 2019b) and adopt the Margin Disparity Discrepancy (MDD) unsupervised domain adaptation algorithm to solve the cross-lingual text labeling problems. Experiments
  • EMNLP 2020 Workshop on Insights from Negative Results in NLP
    2020
    Neural Architecture Search (NAS) methods, which automatically learn entire neural model or individual neural cell architectures, have recently achieved competitive or state-of-the-art (SOTA) performance on a variety of natural language processing and computer vision tasks, including language modeling, natural language inference, and image classification. In this work, we explore the applicability of a SOTA
  • Priyanka Sen, Emine Yilmaz
    EMNLP 2020 Workshop on Insights from Negative Results in NLP
    2020
    Collecting training data for semantic parsing is a time-consuming and expensive task. As a result, there is growing interest in industry to reduce the number of annotations required to train a semantic parser, both to cut down on costs and to limit customer data handled by annotators. In this paper, we propose uncertainty and traffic-aware active learning, a novel active learning method that uses model
  • Ting-Yun Chang, Yang Liu, Karthik Gopalakrishnan, Behnam Hedayatnia, Pei Zhou, Dilek Hakkani-Tür
    EMNLP 2020 Workshop on DeeLIO
    2020
    Pretrained language models have excelled at many NLP tasks recently; however, their social intelligence is still unsatisfactory. To enable this, machines need to have a more general understanding of our complicated world and develop the ability to perform commonsense reasoning besides fitting the specific downstream tasks. External commonsense knowledge graphs (KGs), such as ConceptNet, provide rich information
  • Greg Hanneman, Georgiana Dinu
    WMT 2020
    2020
    The ability of machine translation (MT) models to correctly place markup is crucial to generating high-quality translations of formatted input. This paper compares two commonly used methods of representing markup tags and tests the ability of MT models to learn tag placement via training data augmentation. We study the interactions of tag representation, data augmentation size, tag complexity, and language
  • Dustin Axman, Reda Yacouby
    EMNLP 2020 Workshop on Eval4NLP
    2020
    In pursuit of the perfect supervised NLP classifier, razor thin margins and low-resource test-sets can make modeling decisions difficult. Popular metrics such as Accuracy, Precision, and Recall are often insufficient as they fail to give a complete picture of the model’s behavior. We present a probabilistic extension of Precision, Recall, and F1 score, which we refer to as confidence-Precision (cPrecision

Latest news

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Amazon Photos team is looking for a world-class Applied Scientist to join us and use AI to help customers relive their cherished memories. Our team of scientists have developed algorithms and models that power Amazon Photos features for millions of photos and videos daily. As part of the team, we expect that you will develop innovative solutions to hard problems at massive scale, and publish your findings in at peer reviewed conferences and workshops. With all the recent advancements in Vision-Language models, Amazon Photos has completely re-thought the product roadmap and is looking for Applied Scientists to deliver both the short-term roadmap working closely with Product and Engineering and make investments for the long-term. Our research themes include, but are not limited to: foundational models, contrastive learning, diffusion models, few-shot and zero-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, deep learning, and large scale image and video detection and recognition. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Visual-Language Model space - Design and execute experiments to evaluate the performance of different models, and iterate quickly to improve results - Create robust evaluation frameworks for assessing model performance across different domains and use cases - Think big about the Visual-Language Model space over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems within Amazon Photos - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team Amazon Photos is the one of the main digital products offered to Prime subscribers along with Amazon Music and Amazon Video. Amazon Photos provides unlimited photo storage and 5 GB for videos to Prime members and is a top Prime benefit in multiple marketplaces. AI-driven experiences based on image and video understanding are core to customer delight for the business. These experiences are delivered in our mobile, web and desktop apps, in Fire TV, and integrated into Alexa devices such as Echo Show. We solve real-world problems using AI while being a positive force for good.