Text normalization with only 3% as much training data

Proteno model dramatically increases the efficiency of the first step in text-to-speech conversion.

With services like Alexa, which use synthesized speech for output, text normalization (TN) is usually the first step in the process of text-to-speech conversion. TN takes raw text as input— say, the string 6-21-21 — and expands it into a verbalized form that a text-to-speech model can use to produce the final speech — “twenty first of June twenty twenty one”.

Historically, TN algorithms relied on hard-coded rules, which didn’t generalize across languages and were hard to maintain: a typical rule-based TN system for a single language might have thousands of rules, which evolve over time and whose development requires linguistic expertise.

Text Normalization.png
Text normalization converts the output of computational processes — such as the natural-language-understanding models that handle Alexa customers' requests — into a form that will make sense when read out as synthesized speech.
Credit: Glynis Condon

More recently, academic and industry researchers have begun developing machine-learning-based TN models. But these have drawbacks, too. 

Sequence-to-sequence models occasionally make unacceptable errors, such as converting “$5” to “five pounds”. Semiotic-classification models require domain-specific information classes created by linguistic experts — classes such as emoticonor telephone number — which limits their generalizability. And both types of models require large amounts of training data, which makes it difficult to scale them across languages.

At this year’s meeting of the North American Chapter of the Association for Computational Linguistics (NAACL), my colleagues and I are presenting a new text normalization model, called Proteno, that addresses these challenges.

We evaluated Proteno on three languages, English, Spanish, and Tamil. There’s a large body of research on TN in English, but no TN datasets existed for Spanish and Tamil. Consequently, we created our own datasets, which we have publicly released for use by other TN researchers.

Proteno specifies only a few, low-level normalization classes — such as ordinal number, cardinal number, or Roman numeral — which generalize well across languages. From the data, Proteno then learns a huge variety of additional, fine-grained classes. 

In our experiments on English, for instance, we used eight predefined classes, and Proteno automatically generated another 2,658. By contrast, semiotic-classification models typically have about 20 classes.

Proteno also uses a simple but effective scheme for tokenization, or splitting texts up into smaller chunks. Prior tokenization techniques required linguistic knowledge or data-heavy training; Proteno’s tokenization technique, by contrast, simply breaks text up at spaces and at transitions between Unicode classes, such as letternumeral, or punctuation mark. Consequently, it can generalize across languages, it enables the majority of normalizations to be learned from the data, and it reduces the incidence of unacceptable errors. 

Together, these techniques also allow Proteno to make do with much less training data than previous machine learning approaches. In our experiments, Proteno offered comparable performance with the previous state of the art in English — while requiring only 3% as much training data. 

Because there were no prior TN models trained on Spanish and Tamil, we had no benchmarks for our experiments. But on comparable amounts of training data, the Proteno models trained on Tamil and Spanish achieved accuracies comparable to that of the one trained on English (99.1% for Spanish, 96.7% for Tamil, and 97.4% for English).


Proteno treats TN as a sequence classification problem, where most of the classes are learned. The figure below illustrates Proteno’s training and run-time processing pipelines, which have slightly different orders.

Proteno pipeline (new).png

The training pipeline consists of the following steps:

  • Tokenization: Previous tokenization methods relied on language-specific rules devised by linguists. For instance, the string 6-21-21 would be treated as a single token of the type date. We propose a granular tokenization mechanism that is language independent and applicable to any space-separated language. The text to be normalized is first split at its spaces and then further split wherever there is a change in the Unicodeclass. The string 6-21-21 thus becomes five tokens, and we count on Proteno to learn how to handle them properly.
  • Annotation: The tokenized, unnormalized text is annotated token by token, which gives us a one-to-one mapping between each unnormalized token and its ground-truth normalization. This data will be used to train the model.
  • Class generation: Each token is then mapped to a class. A class may receive tokens only of a particular type; so, for instance, the class corresponding to dollars will not accept the type pounds, and vice versa. This prevents the model from making unacceptable errors. Each class also has an associated normalization function.

    There are two kinds of classes:

    1. Predefined: We define a limited number of classes (around 8-10) containing basic normalization rules. A small subset of these (3-5) contain language-specific rules, such as how to distinguish cardinal and ordinal uses of a number. Other classes — such as self, digit, and Roman numerals — remain similar across many languages.
    2. Auto-generated (AG): The model also generates classes automatically by analyzing the unnormalized-to-normalized token mappings in the dataset. If no existing class (pre-coded or AG) can generate the target normalization for a token in the training data, a new class is automatically generated. For instance, if the dataset includes the annotation “12→December", and if none of the existing classes can generate this normalization, then the class “12_to_December_AG" is created. This class accepts only “12", and its normalization function returns “December". AGs enable Proteno to learn the majority of normalizations automatically from data.
  • Classification: We model TN as a sequence-tagging problem, where the input is a sequence of unnormalized tokens and the output is the sequence of classes that can generate the normalized text. We experimented with four different types of classifiers: conditional random fields (CRFs), bi-directional long-short-term-memory models (bi-LSTMs), bi-LSTM-CRF combinations, and Transformers.


As the goal of Proteno is to be applicable to multiple languages, we evaluated it across three languages, English, Spanish, and Tamil. English had significantly more auto-generated classes than Tamil or Spanish, as written English tends to use many more abbreviations than the other two languages. 

LanguageTotal predefined classesLanguage-specific predefined classesAuto-generated classes
Proteno v. SOA.png
Proteno’s performance on 11 classes found in existing datasets, compared to the performance of two state-of-the-art models trained on 32 times as much data.

To benchmark Proteno’s performance in English, we could compare it to earlier models on only 11 of the 13 predefined classes found in existing datasets; differences in tokenization schemes meant that there were no logical mappings for the other two classes.

These results indicate that Proteno is a strong candidate for doing TN with low data annotation requirements while curbing unacceptable errors, which would make it a robust and scalable solution for production text-to-speech models.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Bellevue
How do you design and provide right incentives for millions of sellers that inbound and ship billions of customer orders? How do you measure sellers' response to /causal impacts of capacity control policies we implemented at Amazon using the state-of-the-art econometric techniques? How do you optimize Amazon’s third-party supply chain using new ideas never implemented at this scale to benefit millions of customers worldwide? How do you design and evaluate seller assistance to drive their success? If these type of questions get your mind racing, we want to hear from you.Supply Chain Optimization Technologies (SCOT) optimizes Amazon’s global supply chain end to end and build systems to deliver billions of products to our customers’ doorsteps faster every year while saving hundreds of millions of dollars using economics, operational research, machine learning, and scalable distributed software on the Cloud. Fulfillment by Amazon (FBA) is an Amazon service for our marketplace third party sellers, where our sellers leverage our world-class facilities and provide customers Prime delivery promise on all their goods.We are looking for the next outstanding economist to join our interdisciplinary team of data scientists, research scientists, applied scientists, economists. The ideal candidate combines econometric acumen with strong business judgment. You have versatile modeling skills and are comfortable extracting insights from observational and experimental data. You translate insights into action through proofs-of-concept and partnerships with engineers and data scientists to productionize. You are excited to learn from and alongside seasoned analysts, scientists, engineers, and business leaders. You are an excellent communicator and effectively translate business ideas and technical findings into business action (and customer delight).Key job responsibilitiesProvide data-driven guidance and recommendations on strategic questions facing the FBA leadershipDesign and implement V0 models and experiments to kickstart new initiatives, thinking, and drive system-level changes across AmazonHelp build a long-term research agenda to understand, break down, and tackle the most stubborn and ambiguous business challengesInfluence business leaders and work closely with other scientists at Amazon to deliver measurable progress and change
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.