In online shopping quality is a key consideration when purchasing an item. Since customers cannot physically touch or try out an item before buying it, they must assess its quality from information gathered online. In a typical eCommerce setting, the customer is presented with seller-generated content from the product catalog, such as an image of the product, a textual description, and lists or comparisons of attributes. In addition to catalog attributes, customers often have access to customer-generated content such as reviews and product questions and answers.In a crowdsourced study, we asked crowd workers to compare product pairs from kitchen, electronics, home, beauty and office categories. In a side-by-side comparison, we asked them to choose the product that is higher quality, and further to identify the attributes that contributed to their judgment, where the attributes were both seller-generated and customer-generated. We find that customers tend to perceive more expensive items as higher quality but that their purchase decisions are uncorrelated with quality, suggesting that customers seek a trade-off between price and quality when making purchase decisions. Crowd workers placed a higher value on attributes derived from customer-generated content such as reviews than on catalog attributes. Among the catalog attributes,brand, item material and pack size1were most often selected. Finally, attributes with a low correlation with perceived quality are nonetheless useful in predicting purchases in a machine-learned system.
Research areas