Towards robust knowledge representations in multilingual LLMs for equivalence and inheritance based consistent reasoning
2025
Reasoning and linguistic skills form the cornerstone of human intelligence, facilitating problem-solving and decision-making. Recent advances in Large Language Models (LLMs) have led to impressive linguistic capabilities and emergent reasoning behaviors, fueling widespread adoption across application do-mains. However, LLMs still struggle with complex reasoning tasks, highlighting their systemic limitations. In this work, we focus on evaluating whether LLMs have the requisite representations to reason using two foundational relationships: "equivalence" and "inheritance". We introduce novel tasks and benchmarks spanning six languages and observe that current SOTA LLMs often produce conflict-ing answers to the same questions across languages in 17.3-57.5% of cases and violate inheritance constraints in up to 37.2% cases. To enhance consistency across languages, we propose novel "Compositional Representations" where tokens are represented as composition of equivalent tokens across languages, with result-ing conflict reduction (up to -4.7%) indicating benefits of shared LLM representations.
Research areas