Optimized loudspeaker planning for adaptive sound-field correction and non-stationary listening areas
2025
Surround sound systems commonly distribute loudspeakers along standardized layouts for multichannel audio reproduction. However in less controlled environments, practical layouts vary in loudspeaker quantity, placement, and listening locations / areas. Deviations from standard layouts introduce sound-field errors that degrade acoustic timbre, imaging, and clarity of audio content reproduction. This work introduces both Bayesian loudspeaker normalization and content panning optimization methods for sound-field correction. Conjugate prior distributions over loudspeaker-listener directions update estimated layouts for non-stationary listening locations; digital filters adapt loudspeaker acoustic responses to a common reference target at the estimated listening area without acoustic measurements. Frequency-domain panning coefficients are then optimized via sensitivity / efficiency objectives subject to spatial, electrical, and acoustic domain constraints; normalized and panned loudspeakers form virtual loudspeakers in standardized layouts for accurate multichannel reproduction. Experiments investigate robustness of Bayesian adaptation, and panning optimizations in practical applications.
Research areas