View of one of the Amazon Spheres and an office tower at Amazon's headquarters in Seattle, WA, USA.

Publications

Amazon is a great place to practice science and have real business impact, but that’s only one part of the story. Our scientists continue to publish, teach, and engage with the worldwide research community.
3,883 results found
  • Chi-Fang Chen, Fernando Brandão
    arXiv
    2021
    The Eigenstate Thermalization Hypothesis (ETH) has played a major role in explaining thermodynamic phenomena in quantum systems. However, so far, no connection has been known between ETH and the timescale of thermalization. In this paper, we rigorously show that ETH indeed implies fast thermalization to the global Gibbs state. We show fast convergence for two models of thermalization. In the first, the
  • Tim Januschowski, 80 co-authors
    International Journal of Forecasting
    2021
    Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review
  • Oleksandr Shchur, Ali Caner Turkmen, Tim Januschowski, Jan Gasthaus, Stephan Günnemann
    ICML 2021 Workshop on Uncertainty and Robustness in Deep Learning , NeurIPS 2021
    2021
    Automatically detecting anomalies in event data can provide substantial value in domains such as healthcare, DevOps, and information security. In this paper, we frame the problem of detecting anomalous continuous-time event sequences as out-of-distribution (OoD) detection for temporal point processes (TPPs). We show how this problem can be approached using tools from the goodness-of-fit (GoF) testing literature
  • ACM Computing Surveys
    2021
    Deep learning based forecasting methods have become the methods of choice in many applications of time series prediction or forecasting often outperforming other approaches. Consequently, over the last years, these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently ranked among the best entries in forecasting competitions(e.g.,M4andM5). This practical success
  • Abdul Fatir Ansari, Konstantinos Benidis, Richard Kurle, Ali Caner Turkmen, Harold Soh, Alex Smola, Yuyang (Bernie) Wang, Tim Januschowski
    NeurIPS 2021
    2021
    Many complex time series can be effectively subdivided into distinct regimes that exhibit persistent dynamics. Discovering the switching behavior and the statistical patterns in these regimes is important for understanding the underlying dynamical system. We propose the Recurrent Explicit Duration Switching Dynamical System (RED-SDS), a flexible model that is capable of identifying both state- and time-dependent
  • Richard Kurle, Tim Januschowski, Jan Gasthaus, Yuyang (Bernie) Wang
    NeurIPS 2021 Workshop on Bayesian Deep Learning
    2021
    Probabilistic inference of Neural Network parameters is challenging due to the highly multi-modal likelihood functions. Most importantly, the permutation invariance of the neurons of the hidden layers renders the likelihood function unidentifiable with a factorial number of equivalent (symmetric) modes, independent of the data. We show that variational Bayesian methods that approximate the (multi-modal)
  • Tim Januschowski, Yuyang (Bernie) Wang, Kari Torkkola, Timo Erkkilä, Hilaf Hasson, Jan Gasthaus
    International Journal of Forecasting
    2021
    The prevalence of approaches based on gradient boosted trees among the top contestants in the M5 competition is potentially the most eye-catching result. Tree-based methods out-shone other solutions, in particular deep learning-based solutions. The winners in both tracks of the M5 competition heavily relied on them. This prevalence is even more remarkable given the dominance of other methods in the literature
  • Joel Mackenzie, Matthias Petri, Alistair Moffat
    Information Retrieval Journal
    2021
    In top-k ranked retrieval the goal is to efficiently compute an ordered list of the highest scoring k documents according to some stipulated similarity function such as the well-known BM25 approach. In most implementation techniques a min-heap of size k is used to track the top scoring candidates. In this work we consider the question of how best to retrieve the second page of search results, given that
  • arXiv
    2021
    As cloud computing resources become more adopted, the infrastructures in which they are used naturally grow in the amount of resources and overall complexity, becoming harder to manage. Infrastructure-as-Code (IaC) is presented as a solution to this problem, allowing developers to manage and provision these cloud resources programmatically. The infrastructure is then maintained through a code base, allowing
  • Denis Jered McInerney, Chris (Luyang) Kong, Kristjan Arumae, Byron Wallace, Parminder Bhatia
    NeurIPS 2021 Workshop on Machine Learning in Public Health
    2021
    Multi-task learning is useful in NLP because it is often practically desirable to have a single model that works across a range of tasks. In the medical domain, sequential training on tasks may sometimes be the only way to train models, either because access to the original (potentially sensitive) data is no longer available, or simply owing to the computational costs inherent to joint retraining. A major
  • Elisabetta Valiante, Maritza Hernandez, Amin Barzega, Helmut Katzgraber
    Computer Physics Communications
    2021
    Recently, there has been considerable interest in solving optimization problems by mapping these onto a binary representation, sparked mostly by the use of quantum annealing machines. Such binary representation is reminiscent of a discrete physical two-state system, such as the Ising model. As such, physics-inspired techniques—commonly used in fundamental physics studies—are ideally suited to solve optimization
  • James R. Seddon, Bartosz Regula, Hakop Pashayan, Yingkai Ouyang, Earl Campbell
    PRX Quantum
    2021
    Consumption of magic states promotes the stabilizer model of computation to universal quantum computation. Here, we propose three different classical algorithms for simulating such universal quantum circuits, and characterize them by establishing precise connections with a family of magic monotones. Our first simulator introduces a new class of quasiprobability distributions and connects its runtime to
  • Patrick Hayden, Sepehr Nezami, Sandu Popescu, Grant Salton
    PRX Quantum
    2021
    The existence of quantum error-correcting codes is one of the most counterintuitive and potentially technologically important discoveries of quantum-information theory. In this paper, we study a problem called “covariant quantum error correction”, in which the encoding is required to be group covariant. This problem is intimately tied to fault-tolerant quantum computation and the well-known Eastin-Knill
  • Juan Carrasquilla, Giacomo Torlai
    PRX Quantum
    2021
    Over the past few years, machine learning has emerged as a powerful computational tool to tackle complex problems in a broad range of scientific disciplines. In particular, artificial neural networks have been successfully used to mitigate the exponential complexity often encountered in quantum many-body physics, the study of properties of quantum systems built from a large number of interacting particles
  • Robin Harper, Wenjun Yu, Steven T. Flammia
    PRX Quantum
    2021
    As quantum computers approach the fault tolerance threshold, diagnosing and characterizing the noise on large scale quantum devices is increasingly important. One of the most important classes of noise channels is the class of Pauli channels, for reasons of both theoretical tractability and experimental relevance. Here we present a practical algorithm for estimating the s nonzero Pauli error rates in an

Latest news

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.