International Women's Day 2020.png
Credit: Glynis Condon

Seven Amazon scientists shaping the future of AI

To commemorate International Women’s Day, we spoke to women scientists across a variety of research areas at Amazon.

To commemorate International Women’s Day (IWD), during Women's History Month, we asked scientists across a variety of Amazon research areas about their backgrounds, and the most exciting innovations in their fields. Here’s what they had to say.

Xin Luna Dong, principal scientist

Xin Luna Dong
Xin Luna Dong, principal scientist

Dong is a principal scientist, leading the efforts to develop the Amazon Product Knowledge Graph. Dong received her PhD in computer science, with a focus on data integration, from the University of Washington. The personal information management system in Dong’s dissertation (which won the Best Demo award in Sigmod’ 2005), is a personal knowledge graph developed at least five years before the phrase “knowledge graph” was coined. After graduation, Dong led the development of the Knowledge-based Trust project at Google. Dong has co-authored the book Big Data Integration. She is an ACM Distinguished Member, and has received the VLDB Early Career Research Contribution Award for "advancing the state of the art of knowledge fusion”. Dong was program committee co-chair for Sigmoid 2018, and is program committee co-chair for VLDB 2020. She also serves on the VLDB endowment and PVLDB advisory committees.

Innovations I find exciting

A recent innovation that I’m most excited about is graph neural network (GNN). Unlike recurrent neural networks (RNNs) and convolutional neural networks (CNNs), which focus much more on regular data such as word sequences, 2-D images, and 3-D videos, GNNs allow us to leverage graphs to capture much more complex relationships. These include elements in the graph, represented by nodes in the graph, and their relationships, represented by edges between the nodes. Examples of graphs influenced by GNNs include social networks, world wide web (WWW) topology, knowledge graphs, and molecular graphs. As we build knowledge graphs for products, it is amazing how many different ways we can benefit from GNNs.

Naturally, we can apply GNNs on the knowledge graphs we have built, to discern interesting patterns to find popular artists in the music domain. We also model webpage layouts as graphs, and model customer behaviors as graphs, so GNNs help us extract relevant knowledge and enrich our knowledge graphs. This new technique enables us to be so much more creative in the practice of constructing knowledge graphs, and applying the findings to real-world applications.

Claire Law, senior technical program manager

ClaireLaw.jfif
Claire Law, senior technical program manager

Law is senior technical program manager on Amazon’s physical retail team, the team behind the Just Walk Out technology used in Amazon Go and Amazon Go Grocery stores. She studied nanotechnology engineering at the University of Waterloo. Early on, she realized that she didn’t enjoy the type of lab work expected from a researcher in material science. She leveraged a university program, and interned as a software developer, marketer, hardware test engineer, project control officer in consulting, and software program manager. These experiences, coupled with work experiences at Microsoft and Research in Motion, led Law to pursue a career in software.

After a stint in Amazon’s international organization, Law joined the physical retail team to work on machine vision initiatives. On this team, Law is able to leverage her experience in cloud computing and knowledge of optics and photography to build new experiences for physical retail.

Innovations I find exciting

We are only now reaching a level where computer vision can solve real-world problems in a meaningful way. While we still need to be creative in where we look for simplifiers, algorithms are able to solve more and more problems every day. Challenges that looked insurmountable just a couple years ago are now part of production systems across the industry. Checkout-free stores seemed like science fiction before Amazon Go was launched, and now customers are loving this effortless shopping experience in the 25 Amazon Go stores, and the new Amazon Go Grocery store we have open today.

Yoelle Maarek, vice president

Yoelle Maarek, vice president of research and science for Alexa Shopping
Yoelle Maarek, vice president of research and science for Alexa Shopping

Maarek is vice president of research and science, Alexa Shopping. Prior to Amazon, Maarek served in engineering and research leadership roles at Yahoo, Google and IBM. Maarek has been regularly serving as program committee (PC) chair and senior PC committee member at leading academic research conferences related to Web search and data mining, such as SIGIR, The Web Conference, and Web Search and Data Mining (WSDM). She is currently serving on the steering committees of WSDM and the Web Conference series.

She is a member of the Technion Board of Governors and was inducted as an ACM Fellow in 2013. Maarek obtained a PhD in computer science from the Technion, Israel in 1989. She holds an engineering degree from the Ecole des Ponts et Chaussées, and a DEA (graduate degree) in computer science from Paris VI university. Maarek completed her PhD at the Technion in Israel and was a visiting student at Columbia University. She played a pioneering role within industry in researching the field of information retrieval, the computer science discipline behind search, in the pre-Web era, and led the launch of Google Suggest, the query auto-completion capability. As such, she jokingly refers to herself as a “search dinosaur”.

Innovations I find exciting

We are on the verge of making ambient computing happen, and Alexa is pioneering this long-awaited revolution. It forces us to revisit all our assumptions across multiple domains. I see this prevalent especially in search and question answering. These are topics close to my heart. I have been following progress in these areas since I got my PhD thirty years ago. The focus on ambient computing is also a unique opportunity for us at Amazon to demonstrate what we mean by customer-obsessed science. As humans are learning to interact with machines, their behavior is evolving and we need to follow suit. It not only challenges scientists to keep inventing on behalf of customers but also forces all of us to remain humble. We are not here to teach customers how to speak to a machine, but rather to do everything in our power to understand, satisfy and predict their needs so as to constantly wow and delight them.

Angeliki Metallinou, applied science manager

angeliki.jpeg
Angeliki Metallinou, applied science manager

Metallinou is an applied science manager within the Amazon Alexa AI Natural Understanding group. She received both her PhD, and master’s degree in electrical engineering from the University of Southern California. Her interests and experience lie in the areas of spoken and natural language understanding, dialogue systems, machine learning, deep learning, affective computing and applications for education and healthcare.

She has published papers in the areas of speech, language, dialogue, artificial intelligence and multimodal human computer interaction at leading science conferences such as Interspeech, the AAAI Conference on Artificial Intelligence, and the Association for Computational Linguistics (ACL), has served as an area chair for Interspeech 2016, and as a reviewer of papers for several science conferences.

Innovations I find exciting

It is exciting to see how new techniques in deep learning continuously push the boundaries of the state of the art in the fields of dialogue and spoken language processing. I’m very interested in advances around unsupervised, semi-supervised and transfer learning, which allow deep learning models to leverage the power of large corpora without relying on costly and time-consuming manual annotations. Pre-trained language models like BERT and GPT-2 and their use in downstream applications are just a few examples. These innovations are particularly relevant for industry applications where scalability is key.

I am also excited about recent literature in deep learning that is allowing us to develop models to perform complex tasks like higher-level reasoning, for example, over the contents of a document or an image or both, as opposed to simpler classification tasks. I’m also excited to see how these methods can have a positive impact on people through their deployment in products, especially in applications of healthcare, accessibility and education.

Priya Ponnapalli, principal deep learning scientist

Priya Ponnapalli
Priya Ponnapalli, principal deep learning scientist

Ponnapalli is a senior manager and principal deep learning scientist within the Amazon ML Solutions Lab, where she leads a global team of data scientists that help AWS customers accelerate their adoption of ML and cloud technologies across industries, from healthcare and finance to sports. As the leader of Amazon ML Solutions Lab’s sports business, Ponnapalli works with customers including National Football League (NFL), Six Nations Rugby, and Formula 1 (F1), just to name a few, to enhance the fan experience and transform sports using ML.

Ponnapalli is also a senior research affiliate at the Genomic Signal Processing Lab at the University of Utah, and a faculty member at Rutgers Business School, where she teaches ML to business leaders, and works to inspire the next generation of leaders. Prior to joining AWS, she co-founded Eigengene, a data-driven personalized medicine startup and has helped companies like Genentech and Roche establish and build data science teams. For her PhD in electrical and computer engineering at the University of Texas at Austin, Ponnapalli defined and demonstrated the higher-order generalized singular value decomposition (HO GSVD), the only framework that can create a single coherent model from multiple two-dimensional datasets by extending the GSVD from two to more than two matrices.

Innovations I find exciting

As an Amazon ML Solutions Lab scientist, I’m most excited about real-world applications of ML across industries. I’m interested in innovations to overcome challenges with small, limited datasets that companies often have to contend with. I’m also intrigued by model interpretability and explainability which are key to earning trust and spurring broad adoption. I’m passionate about making ML accessible to all, so it can be used to solve some of the most important problems we are facing, from fighting climate change to treating cancer.

Ana Pinheiro Privette, senior program manager

ana.jpg
Ana Pinheiro Privette, senior program manager

Ana Pinheiro Privette is a senior program manager with Amazon's Sustainability group. She joined the Sustainability Science and Innovation team in September 2017 as the program lead for the Amazon Sustainability Data Initiative (ASDI), a program that seeks to leverage Amazon’s scale, technology, and infrastructure to help create more global innovation for sustainability. ASDI is a Tech-for-Good project and is a joint effort between Amazon Sustainability and the AWS Open Data team focusing on democratizing access to key data and analytical capabilities to anyone working in the sustainability space.

Privette was trained as an environmental engineer and as an earth sciences researcher at the New University of Lisbon (Portugal) and at MIT. She did her doctoral research work at NASA in the Washington D.C. area and as part of her project, she spent a couple of years running scientific field work sites in Africa to support a NASA international field campaign. After spending most of her career at NASA and NOAA as a scientist, Privette led projects for the White House climate portfolio, including the Obama Climate Data Initiative and the Partnership for Resilience and Preparedness (PREP), both focused on delivering better access and use of US Federal climate data to support decision makers.

Innovations I find exciting

As part of ASDI, I work very closely with AWS customers developing applications in the space of sustainability to understand what challenges they may be experiencing and how we may accelerate sustainability research and innovation by minimizing the cost and time required to acquire and analyze large sustainability datasets. The ASDI currently works with scientific organizations like NOAA, NASA, the UK Met Office and Government of Queensland to identify, host, and deploy key datasets on the AWS Cloud, including weather observations, weather forecasts, climate projection data, satellite imagery, hydrological data, air quality data, and ocean forecast data. These datasets are publicly available to anyone.

In addition, ASDI provides cloud grants to those interested in exploring the use of AWS’ technology and scalable infrastructure to solve big, long-term sustainability challenges with this data. The dual-pronged approach allows sustainability researchers to analyze massive amounts of data in mere minutes, regardless of where they are in the world or how much local storage space or computing capacity they can access.

Nashlie Sephus, manager, applied science

sephus.jpg
Nashlie Sephus, applied scientist, Amazon Web Services machine learning team.
Credit: Terrence Wells@PoetWilliamsPhotography

Sephus is an applied scientist on AWS’s artificial intelligence team, focusing on computer vision. In this role, Sephus focuses on the fairness and accuracy of the team’s algorithms. Sephus formerly led the Amazon Visual Search team in Atlanta, which launched visual search for replacement parts on the Amazon Shopping app in June 2018. This technology was a result of former startup Partpic (Atlanta) being acquired by Amazon, for which she was the chief technology officer (CTO). Prior to working at Partpic, she received her PhD in 2014 from the School of Electrical and Computer Engineering at the Georgia Institute of Technology. She received her bachelor’s degree in computer engineering in 2007 from Mississippi State University.

Innovations I find exciting

Since the onset of machine learning and artificial intelligence, neural networks (such as convolutional neural networks (CNNs), and generative adversarial networks (GANs), etc.) and learning algorithms have always excited me. It’s being able to quickly and automatically draw patterns from data, whether it be images, video, or audio at scale, that fascinates me. Since music was my first love (along with karaoke!), music information retrieval has always been a passion of mine. These innovations, when used responsibly and fairly, are able to benefit people in their everyday activities.

Research areas

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.