International Women's Day 2020.png
Credit: Glynis Condon

Seven Amazon scientists shaping the future of AI

To commemorate International Women’s Day, we spoke to women scientists across a variety of research areas at Amazon.

To commemorate International Women’s Day (IWD), during Women's History Month, we asked scientists across a variety of Amazon research areas about their backgrounds, and the most exciting innovations in their fields. Here’s what they had to say.

Xin Luna Dong, principal scientist

Xin Luna Dong
Xin Luna Dong, principal scientist

Dong is a principal scientist, leading the efforts to develop the Amazon Product Knowledge Graph. Dong received her PhD in computer science, with a focus on data integration, from the University of Washington. The personal information management system in Dong’s dissertation (which won the Best Demo award in Sigmod’ 2005), is a personal knowledge graph developed at least five years before the phrase “knowledge graph” was coined. After graduation, Dong led the development of the Knowledge-based Trust project at Google. Dong has co-authored the book Big Data Integration. She is an ACM Distinguished Member, and has received the VLDB Early Career Research Contribution Award for "advancing the state of the art of knowledge fusion”. Dong was program committee co-chair for Sigmoid 2018, and is program committee co-chair for VLDB 2020. She also serves on the VLDB endowment and PVLDB advisory committees.

Innovations I find exciting

A recent innovation that I’m most excited about is graph neural network (GNN). Unlike recurrent neural networks (RNNs) and convolutional neural networks (CNNs), which focus much more on regular data such as word sequences, 2-D images, and 3-D videos, GNNs allow us to leverage graphs to capture much more complex relationships. These include elements in the graph, represented by nodes in the graph, and their relationships, represented by edges between the nodes. Examples of graphs influenced by GNNs include social networks, world wide web (WWW) topology, knowledge graphs, and molecular graphs. As we build knowledge graphs for products, it is amazing how many different ways we can benefit from GNNs.

Naturally, we can apply GNNs on the knowledge graphs we have built, to discern interesting patterns to find popular artists in the music domain. We also model webpage layouts as graphs, and model customer behaviors as graphs, so GNNs help us extract relevant knowledge and enrich our knowledge graphs. This new technique enables us to be so much more creative in the practice of constructing knowledge graphs, and applying the findings to real-world applications.

Claire Law, senior technical program manager

ClaireLaw.jfif
Claire Law, senior technical program manager

Law is senior technical program manager on Amazon’s physical retail team, the team behind the Just Walk Out technology used in Amazon Go and Amazon Go Grocery stores. She studied nanotechnology engineering at the University of Waterloo. Early on, she realized that she didn’t enjoy the type of lab work expected from a researcher in material science. She leveraged a university program, and interned as a software developer, marketer, hardware test engineer, project control officer in consulting, and software program manager. These experiences, coupled with work experiences at Microsoft and Research in Motion, led Law to pursue a career in software.

After a stint in Amazon’s international organization, Law joined the physical retail team to work on machine vision initiatives. On this team, Law is able to leverage her experience in cloud computing and knowledge of optics and photography to build new experiences for physical retail.

Innovations I find exciting

We are only now reaching a level where computer vision can solve real-world problems in a meaningful way. While we still need to be creative in where we look for simplifiers, algorithms are able to solve more and more problems every day. Challenges that looked insurmountable just a couple years ago are now part of production systems across the industry. Checkout-free stores seemed like science fiction before Amazon Go was launched, and now customers are loving this effortless shopping experience in the 25 Amazon Go stores, and the new Amazon Go Grocery store we have open today.

Yoelle Maarek, vice president

Yoelle Maarek, vice president of research and science for Alexa Shopping
Yoelle Maarek, vice president of research and science for Alexa Shopping

Maarek is vice president of research and science, Alexa Shopping. Prior to Amazon, Maarek served in engineering and research leadership roles at Yahoo, Google and IBM. Maarek has been regularly serving as program committee (PC) chair and senior PC committee member at leading academic research conferences related to Web search and data mining, such as SIGIR, The Web Conference, and Web Search and Data Mining (WSDM). She is currently serving on the steering committees of WSDM and the Web Conference series.

She is a member of the Technion Board of Governors and was inducted as an ACM Fellow in 2013. Maarek obtained a PhD in computer science from the Technion, Israel in 1989. She holds an engineering degree from the Ecole des Ponts et Chaussées, and a DEA (graduate degree) in computer science from Paris VI university. Maarek completed her PhD at the Technion in Israel and was a visiting student at Columbia University. She played a pioneering role within industry in researching the field of information retrieval, the computer science discipline behind search, in the pre-Web era, and led the launch of Google Suggest, the query auto-completion capability. As such, she jokingly refers to herself as a “search dinosaur”.

Innovations I find exciting

We are on the verge of making ambient computing happen, and Alexa is pioneering this long-awaited revolution. It forces us to revisit all our assumptions across multiple domains. I see this prevalent especially in search and question answering. These are topics close to my heart. I have been following progress in these areas since I got my PhD thirty years ago. The focus on ambient computing is also a unique opportunity for us at Amazon to demonstrate what we mean by customer-obsessed science. As humans are learning to interact with machines, their behavior is evolving and we need to follow suit. It not only challenges scientists to keep inventing on behalf of customers but also forces all of us to remain humble. We are not here to teach customers how to speak to a machine, but rather to do everything in our power to understand, satisfy and predict their needs so as to constantly wow and delight them.

Angeliki Metallinou, applied science manager

angeliki.jpeg
Angeliki Metallinou, applied science manager

Metallinou is an applied science manager within the Amazon Alexa AI Natural Understanding group. She received both her PhD, and master’s degree in electrical engineering from the University of Southern California. Her interests and experience lie in the areas of spoken and natural language understanding, dialogue systems, machine learning, deep learning, affective computing and applications for education and healthcare.

She has published papers in the areas of speech, language, dialogue, artificial intelligence and multimodal human computer interaction at leading science conferences such as Interspeech, the AAAI Conference on Artificial Intelligence, and the Association for Computational Linguistics (ACL), has served as an area chair for Interspeech 2016, and as a reviewer of papers for several science conferences.

Innovations I find exciting

It is exciting to see how new techniques in deep learning continuously push the boundaries of the state of the art in the fields of dialogue and spoken language processing. I’m very interested in advances around unsupervised, semi-supervised and transfer learning, which allow deep learning models to leverage the power of large corpora without relying on costly and time-consuming manual annotations. Pre-trained language models like BERT and GPT-2 and their use in downstream applications are just a few examples. These innovations are particularly relevant for industry applications where scalability is key.

I am also excited about recent literature in deep learning that is allowing us to develop models to perform complex tasks like higher-level reasoning, for example, over the contents of a document or an image or both, as opposed to simpler classification tasks. I’m also excited to see how these methods can have a positive impact on people through their deployment in products, especially in applications of healthcare, accessibility and education.

Priya Ponnapalli, principal deep learning scientist

Priya Ponnapalli
Priya Ponnapalli, principal deep learning scientist

Ponnapalli is a senior manager and principal deep learning scientist within the Amazon ML Solutions Lab, where she leads a global team of data scientists that help AWS customers accelerate their adoption of ML and cloud technologies across industries, from healthcare and finance to sports. As the leader of Amazon ML Solutions Lab’s sports business, Ponnapalli works with customers including National Football League (NFL), Six Nations Rugby, and Formula 1 (F1), just to name a few, to enhance the fan experience and transform sports using ML.

Ponnapalli is also a senior research affiliate at the Genomic Signal Processing Lab at the University of Utah, and a faculty member at Rutgers Business School, where she teaches ML to business leaders, and works to inspire the next generation of leaders. Prior to joining AWS, she co-founded Eigengene, a data-driven personalized medicine startup and has helped companies like Genentech and Roche establish and build data science teams. For her PhD in electrical and computer engineering at the University of Texas at Austin, Ponnapalli defined and demonstrated the higher-order generalized singular value decomposition (HO GSVD), the only framework that can create a single coherent model from multiple two-dimensional datasets by extending the GSVD from two to more than two matrices.

Innovations I find exciting

As an Amazon ML Solutions Lab scientist, I’m most excited about real-world applications of ML across industries. I’m interested in innovations to overcome challenges with small, limited datasets that companies often have to contend with. I’m also intrigued by model interpretability and explainability which are key to earning trust and spurring broad adoption. I’m passionate about making ML accessible to all, so it can be used to solve some of the most important problems we are facing, from fighting climate change to treating cancer.

Ana Pinheiro Privette, senior program manager

ana.jpg
Ana Pinheiro Privette, senior program manager

Ana Pinheiro Privette is a senior program manager with Amazon's Sustainability group. She joined the Sustainability Science and Innovation team in September 2017 as the program lead for the Amazon Sustainability Data Initiative (ASDI), a program that seeks to leverage Amazon’s scale, technology, and infrastructure to help create more global innovation for sustainability. ASDI is a Tech-for-Good project and is a joint effort between Amazon Sustainability and the AWS Open Data team focusing on democratizing access to key data and analytical capabilities to anyone working in the sustainability space.

Privette was trained as an environmental engineer and as an earth sciences researcher at the New University of Lisbon (Portugal) and at MIT. She did her doctoral research work at NASA in the Washington D.C. area and as part of her project, she spent a couple of years running scientific field work sites in Africa to support a NASA international field campaign. After spending most of her career at NASA and NOAA as a scientist, Privette led projects for the White House climate portfolio, including the Obama Climate Data Initiative and the Partnership for Resilience and Preparedness (PREP), both focused on delivering better access and use of US Federal climate data to support decision makers.

Innovations I find exciting

As part of ASDI, I work very closely with AWS customers developing applications in the space of sustainability to understand what challenges they may be experiencing and how we may accelerate sustainability research and innovation by minimizing the cost and time required to acquire and analyze large sustainability datasets. The ASDI currently works with scientific organizations like NOAA, NASA, the UK Met Office and Government of Queensland to identify, host, and deploy key datasets on the AWS Cloud, including weather observations, weather forecasts, climate projection data, satellite imagery, hydrological data, air quality data, and ocean forecast data. These datasets are publicly available to anyone.

In addition, ASDI provides cloud grants to those interested in exploring the use of AWS’ technology and scalable infrastructure to solve big, long-term sustainability challenges with this data. The dual-pronged approach allows sustainability researchers to analyze massive amounts of data in mere minutes, regardless of where they are in the world or how much local storage space or computing capacity they can access.

Nashlie Sephus, manager, applied science

sephus.jpg
Nashlie Sephus, applied scientist, Amazon Web Services machine learning team.
Credit: Terrence Wells@PoetWilliamsPhotography

Sephus is an applied scientist on AWS’s artificial intelligence team, focusing on computer vision. In this role, Sephus focuses on the fairness and accuracy of the team’s algorithms. Sephus formerly led the Amazon Visual Search team in Atlanta, which launched visual search for replacement parts on the Amazon Shopping app in June 2018. This technology was a result of former startup Partpic (Atlanta) being acquired by Amazon, for which she was the chief technology officer (CTO). Prior to working at Partpic, she received her PhD in 2014 from the School of Electrical and Computer Engineering at the Georgia Institute of Technology. She received her bachelor’s degree in computer engineering in 2007 from Mississippi State University.

Innovations I find exciting

Since the onset of machine learning and artificial intelligence, neural networks (such as convolutional neural networks (CNNs), and generative adversarial networks (GANs), etc.) and learning algorithms have always excited me. It’s being able to quickly and automatically draw patterns from data, whether it be images, video, or audio at scale, that fascinates me. Since music was my first love (along with karaoke!), music information retrieval has always been a passion of mine. These innovations, when used responsibly and fairly, are able to benefit people in their everyday activities.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
IN, TS, Hyderabad
Job summaryAre you excited about driving business growth for millions of sellers by applying Machine Learning? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? We are looking for experienced data scientists to build sophisticated decision making systems that help Amazon Marketplace Sellers to grow their businesses.Amazon Marketplace enables sellers to reach hundreds of millions of customers and provides sellers the tools and services needed to make e-commerce simple, efficient and successful. Our team builds the core intelligence, insights, and algorithms that power a range of products used by millions of sellers. We are tackling large-scale, challenging problems such as helping sellers to prioritise business tasks by bringing together petabytes of data from sources across Amazon.You will be proficient with creating value out of data by formulating questions, analysing vast amounts of data, and communicating insights effectively to audience of varied backgrounds. In addition, you'll contribute to online experiments, build machine learning pipelines and personalised data products.To know more about Amazon science, Please visit https://www.amazon.scienceKey job responsibilities· Collaborate with domain experts, formulate questions, gather, process and analyse petabytes of data to unearth reliable insights· Design & execute experiments and analyze experimental results· Communicate insights effectively to audience of a wide range of backgrounds· Formulate relevant prediction problems and solve them by developing machine learning models· Partner with data engineering teams to improve quality of data assets, metrics and insights· Leverage industry best practices to establish repeatable science practices, principles & processes
US, VA, Arlington
Job summaryAmazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities.Sponsored Products helps merchants, retail vendors, and brand owners succeed via native advertising that grows incremental sales of their products sold through Amazon. The Sponsored Products Ad Marketplace organization optimizes the systems and ad placements to match advertiser demand with publisher supply using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. Our goals are to help buyers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and to build a major, sustainable business that helps Amazon continuously innovate on behalf of all customers.We are seeking a Sr. Applied Science Manager who has a solid background in applied Machine Learning and AI, deep passion for building data-driven products, ability to communicate data insights and scientific vision, and has a proven track record of leading both applied scientists and software engineers to execute complex projects and deliver business impacts.In this team, Machine Learning and Deep Learning technologies including Semantic Retrieval, Natural Language Processing (NLP), Information Extraction, Image Understanding, Learning to Rank are used to match shoppers' search queries to ads with per impression prediction models that run in real-time with tight latency budgets. Models are trained using self-supervised techniques, transfer learning, and supervised training using labeled datasets. Knowledge distillation and model compression techniques are used to optimize model performance for production serving.The Senior Manager role will lead science and engineering efforts in these areas for Amazon Search pages WW. The person in this role is responsible for: maintaining the consistent and long term reliability for the models and the delivery services that power them, managing diverse teams across multiple domains, and collaborating cross-functional with other senior decision makers. Our critical LPs for this role are Think Big, Are Right A lot, and Earns Trust. What is key is that the leader will need a dynamic mindset to build systems that are flexible and will scale.In this role, you will:· Lead a group of both applied scientists and software engineers to deliver machine-learning and AI solutions to production.· Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner.· Develop science and engineering roadmap, run Sprint/quarter and annual planning, and foster cross-team collaboration to execute complex projects.· Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management.· Hire and develop top talents, provide technical and career development guidance to both scientists and engineers in the organization.Locations: Seattle, WA; New York, NY; Arlington, VA
US, WA, Seattle
Job summaryWorkforce Staffing (WFS) brings together the workforce powering Amazon’s ability to delight customers: the Amazon Associate. With over 1M hires, WFS supports sourcing, hiring, and developing the best talent to work in our fulfillment centers, sortation centers, delivery stations, shopping sites, Prime Air locations, and more.WFS' Funnel Science and Analytics team is looking for a Research Scientist. This individual will be responsible for conducting experiments and evaluating the impact of interventions when conducting experiments is not feasible. The perfect candidate will have the applied experience and the theoretical knowledge of policy evaluation and conducting field studies.Key job responsibilitiesAs a Research Scientist (RS), you will do causal inference, design studies and experiments, leverage data science workflows, build predictive models, conduct simulations, create visualizations, and influence science and analytics practice across the organization.Provide insights by analyzing historical data from databases (Redshift, SQL Server, Oracle DW, and Salesforce).Identify useful research avenues for increasing candidate conversion, test, and create well written documents to communicate to technical and non-technical audiences.About the teamFunnel Science and Analytics team finds ways to maximize the conversion and early retention of every candidate who wants to be an Amazon Associate. By focusing on our candidates, we improve candidate and business outcomes, and Amazon takes a step closer to being Earth’s Best Employer.
US, CA, Santa Clara
Job summaryJob summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon Sub-Same-Day Supply Chain team is looking for an experienced and motivated Senior Data Scientist to generate data-driven insights influencing the long term SSD supply chain strategy, build the necessary predictive models, optimization algorithms and customer behavioral segments allowing us to discover and build the roadmap for SSD to enable operational efficiency and scale.Key job responsibilitiesWork with product managers, engineers, other scientists, and leadership to identify and prioritize complex problems.Translate business problems into specific analytical questions and form hypotheses that can be answered with available data using scientific methods or identify additional data needed in the master datasets to fill any gapsDesign, develop, and evaluate highly innovative statistics and ML modelsGuide and establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementationProactively seek to identify business opportunities and insights and provide solutions to shape key business processes and policies based on a broad and deep knowledge of Amazon data, industry best-practices, and work done by other teams.A day in the lifeIn this role, you will be a technical expert with significant scope and impact. You will work with Product Managers, Business Engineers, and other Scientists, to deeply understand SSDs current optimization strategy while benchmarking against industry best practices and standards to gain insights that will drive our roadmap. A successful Data Scientist will have extreme bias for action needed in a startup environment, with outstanding leadership skills, proven ability to build and manage medium-scale modeling projects, identify data requirements, build methodology and tools that are statistically grounded. It will be a person who enjoys diving deep into data, doing analysis, discovering root causes, and designing long-term scientific solutions. We are seeking someone who can thrive in a fast-paced, high-energy and fun work environment where we deliver value incrementally and frequently. We value highly technical people who know their subject matter deeply and are willing to learn new areas. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career.About the teamAmazon's Sub-Same Day (SSD) delivery program is designed to get customers their items as fast as possible – currently in as quickly as five hours. With ultra-fast delivery becoming increasingly important, we are looking for an experienced Senior Data Scientist to help us benchmark against industry standards to uncover insights to improve and optimize the long term supply chain strategy for Amazons Sub-Same-Day business.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, WA, Seattle
Job summaryAmazon's Weblab team enables experimentation at massive scale to help Amazon build better products for customers. A/B testing is in Amazon's DNA and we're at the core of how Amazon innovates on behalf of customers. We are seeking a skilled Applied Scientist to help us build the future of experimentation systems at Amazon.About you:You have an entrepreneurial spirit and want to make a big impact on Amazon and its customers. You are excited about cutting-edge research on unsupervised learning, graph algorithms, and causal inference in the intersection between Machine Learning, Statistics, and Econometrics. You enjoy building massive scale and high performance systems but also have a bias for delivering simple solutions to complex problems. You're looking for a career where you'll be able to build, to deliver, and to impress. You challenge yourself and others to come up with better solutions. You develop strong working relationships and thrive in a collaborative team environment.About us together:We're going to help Amazon make better long term decisions by designing and delivering A/B-testing systems for long-term experiments, and by using these systems to figure out how near term behavior impacts long term growth and profitability. Our work will inform some of the biggest decisions at Amazon. Along the way, we're going to face seemingly insurmountable challenges. We're going to argue about how to solve them, and we'll work together to find a solution that is better than each of the proposals we came in with. We'll make tough decisions, but we'll all understand why. We'll be the dream team.We have decades of combined experience on the team in many areas science and engineering so it's a great environment in which to learn and grow. A/B testing is one of the hottest areas of research and development in the world today and this is a chance to learn how it works in the company known for pioneering its use.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles).Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.