International Women's Day 2020.png
Credit: Glynis Condon

Seven Amazon scientists shaping the future of AI

To commemorate International Women’s Day, we spoke to women scientists across a variety of research areas at Amazon.

To commemorate International Women’s Day (IWD), during Women's History Month, we asked scientists across a variety of Amazon research areas about their backgrounds, and the most exciting innovations in their fields. Here’s what they had to say.

Xin Luna Dong, principal scientist

Xin Luna Dong
Xin Luna Dong, principal scientist

Dong is a principal scientist, leading the efforts to develop the Amazon Product Knowledge Graph. Dong received her PhD in computer science, with a focus on data integration, from the University of Washington. The personal information management system in Dong’s dissertation (which won the Best Demo award in Sigmod’ 2005), is a personal knowledge graph developed at least five years before the phrase “knowledge graph” was coined. After graduation, Dong led the development of the Knowledge-based Trust project at Google. Dong has co-authored the book Big Data Integration. She is an ACM Distinguished Member, and has received the VLDB Early Career Research Contribution Award for "advancing the state of the art of knowledge fusion”. Dong was program committee co-chair for Sigmoid 2018, and is program committee co-chair for VLDB 2020. She also serves on the VLDB endowment and PVLDB advisory committees.

Innovations I find exciting

A recent innovation that I’m most excited about is graph neural network (GNN). Unlike recurrent neural networks (RNNs) and convolutional neural networks (CNNs), which focus much more on regular data such as word sequences, 2-D images, and 3-D videos, GNNs allow us to leverage graphs to capture much more complex relationships. These include elements in the graph, represented by nodes in the graph, and their relationships, represented by edges between the nodes. Examples of graphs influenced by GNNs include social networks, world wide web (WWW) topology, knowledge graphs, and molecular graphs. As we build knowledge graphs for products, it is amazing how many different ways we can benefit from GNNs.

Naturally, we can apply GNNs on the knowledge graphs we have built, to discern interesting patterns to find popular artists in the music domain. We also model webpage layouts as graphs, and model customer behaviors as graphs, so GNNs help us extract relevant knowledge and enrich our knowledge graphs. This new technique enables us to be so much more creative in the practice of constructing knowledge graphs, and applying the findings to real-world applications.

Claire Law, senior technical program manager

ClaireLaw.jfif
Claire Law, senior technical program manager

Law is senior technical program manager on Amazon’s physical retail team, the team behind the Just Walk Out technology used in Amazon Go and Amazon Go Grocery stores. She studied nanotechnology engineering at the University of Waterloo. Early on, she realized that she didn’t enjoy the type of lab work expected from a researcher in material science. She leveraged a university program, and interned as a software developer, marketer, hardware test engineer, project control officer in consulting, and software program manager. These experiences, coupled with work experiences at Microsoft and Research in Motion, led Law to pursue a career in software.

After a stint in Amazon’s international organization, Law joined the physical retail team to work on machine vision initiatives. On this team, Law is able to leverage her experience in cloud computing and knowledge of optics and photography to build new experiences for physical retail.

Innovations I find exciting

We are only now reaching a level where computer vision can solve real-world problems in a meaningful way. While we still need to be creative in where we look for simplifiers, algorithms are able to solve more and more problems every day. Challenges that looked insurmountable just a couple years ago are now part of production systems across the industry. Checkout-free stores seemed like science fiction before Amazon Go was launched, and now customers are loving this effortless shopping experience in the 25 Amazon Go stores, and the new Amazon Go Grocery store we have open today.

Yoelle Maarek, vice president

Yoelle Maarek, vice president of research and science for Alexa Shopping
Yoelle Maarek, vice president of research and science for Alexa Shopping

Maarek is vice president of research and science, Alexa Shopping. Prior to Amazon, Maarek served in engineering and research leadership roles at Yahoo, Google and IBM. Maarek has been regularly serving as program committee (PC) chair and senior PC committee member at leading academic research conferences related to Web search and data mining, such as SIGIR, The Web Conference, and Web Search and Data Mining (WSDM). She is currently serving on the steering committees of WSDM and the Web Conference series.

She is a member of the Technion Board of Governors and was inducted as an ACM Fellow in 2013. Maarek obtained a PhD in computer science from the Technion, Israel in 1989. She holds an engineering degree from the Ecole des Ponts et Chaussées, and a DEA (graduate degree) in computer science from Paris VI university. Maarek completed her PhD at the Technion in Israel and was a visiting student at Columbia University. She played a pioneering role within industry in researching the field of information retrieval, the computer science discipline behind search, in the pre-Web era, and led the launch of Google Suggest, the query auto-completion capability. As such, she jokingly refers to herself as a “search dinosaur”.

Innovations I find exciting

We are on the verge of making ambient computing happen, and Alexa is pioneering this long-awaited revolution. It forces us to revisit all our assumptions across multiple domains. I see this prevalent especially in search and question answering. These are topics close to my heart. I have been following progress in these areas since I got my PhD thirty years ago. The focus on ambient computing is also a unique opportunity for us at Amazon to demonstrate what we mean by customer-obsessed science. As humans are learning to interact with machines, their behavior is evolving and we need to follow suit. It not only challenges scientists to keep inventing on behalf of customers but also forces all of us to remain humble. We are not here to teach customers how to speak to a machine, but rather to do everything in our power to understand, satisfy and predict their needs so as to constantly wow and delight them.

Angeliki Metallinou, applied science manager

angeliki.jpeg
Angeliki Metallinou, applied science manager

Metallinou is an applied science manager within the Amazon Alexa AI Natural Understanding group. She received both her PhD, and master’s degree in electrical engineering from the University of Southern California. Her interests and experience lie in the areas of spoken and natural language understanding, dialogue systems, machine learning, deep learning, affective computing and applications for education and healthcare.

She has published papers in the areas of speech, language, dialogue, artificial intelligence and multimodal human computer interaction at leading science conferences such as Interspeech, the AAAI Conference on Artificial Intelligence, and the Association for Computational Linguistics (ACL), has served as an area chair for Interspeech 2016, and as a reviewer of papers for several science conferences.

Innovations I find exciting

It is exciting to see how new techniques in deep learning continuously push the boundaries of the state of the art in the fields of dialogue and spoken language processing. I’m very interested in advances around unsupervised, semi-supervised and transfer learning, which allow deep learning models to leverage the power of large corpora without relying on costly and time-consuming manual annotations. Pre-trained language models like BERT and GPT-2 and their use in downstream applications are just a few examples. These innovations are particularly relevant for industry applications where scalability is key.

I am also excited about recent literature in deep learning that is allowing us to develop models to perform complex tasks like higher-level reasoning, for example, over the contents of a document or an image or both, as opposed to simpler classification tasks. I’m also excited to see how these methods can have a positive impact on people through their deployment in products, especially in applications of healthcare, accessibility and education.

Priya Ponnapalli, principal deep learning scientist

Priya Ponnapalli
Priya Ponnapalli, principal deep learning scientist

Ponnapalli is a senior manager and principal deep learning scientist within the Amazon ML Solutions Lab, where she leads a global team of data scientists that help AWS customers accelerate their adoption of ML and cloud technologies across industries, from healthcare and finance to sports. As the leader of Amazon ML Solutions Lab’s sports business, Ponnapalli works with customers including National Football League (NFL), Six Nations Rugby, and Formula 1 (F1), just to name a few, to enhance the fan experience and transform sports using ML.

Ponnapalli is also a senior research affiliate at the Genomic Signal Processing Lab at the University of Utah, and a faculty member at Rutgers Business School, where she teaches ML to business leaders, and works to inspire the next generation of leaders. Prior to joining AWS, she co-founded Eigengene, a data-driven personalized medicine startup and has helped companies like Genentech and Roche establish and build data science teams. For her PhD in electrical and computer engineering at the University of Texas at Austin, Ponnapalli defined and demonstrated the higher-order generalized singular value decomposition (HO GSVD), the only framework that can create a single coherent model from multiple two-dimensional datasets by extending the GSVD from two to more than two matrices.

Innovations I find exciting

As an Amazon ML Solutions Lab scientist, I’m most excited about real-world applications of ML across industries. I’m interested in innovations to overcome challenges with small, limited datasets that companies often have to contend with. I’m also intrigued by model interpretability and explainability which are key to earning trust and spurring broad adoption. I’m passionate about making ML accessible to all, so it can be used to solve some of the most important problems we are facing, from fighting climate change to treating cancer.

Ana Pinheiro Privette, senior program manager

ana.jpg
Ana Pinheiro Privette, senior program manager

Ana Pinheiro Privette is a senior program manager with Amazon's Sustainability group. She joined the Sustainability Science and Innovation team in September 2017 as the program lead for the Amazon Sustainability Data Initiative (ASDI), a program that seeks to leverage Amazon’s scale, technology, and infrastructure to help create more global innovation for sustainability. ASDI is a Tech-for-Good project and is a joint effort between Amazon Sustainability and the AWS Open Data team focusing on democratizing access to key data and analytical capabilities to anyone working in the sustainability space.

Privette was trained as an environmental engineer and as an earth sciences researcher at the New University of Lisbon (Portugal) and at MIT. She did her doctoral research work at NASA in the Washington D.C. area and as part of her project, she spent a couple of years running scientific field work sites in Africa to support a NASA international field campaign. After spending most of her career at NASA and NOAA as a scientist, Privette led projects for the White House climate portfolio, including the Obama Climate Data Initiative and the Partnership for Resilience and Preparedness (PREP), both focused on delivering better access and use of US Federal climate data to support decision makers.

Innovations I find exciting

As part of ASDI, I work very closely with AWS customers developing applications in the space of sustainability to understand what challenges they may be experiencing and how we may accelerate sustainability research and innovation by minimizing the cost and time required to acquire and analyze large sustainability datasets. The ASDI currently works with scientific organizations like NOAA, NASA, the UK Met Office and Government of Queensland to identify, host, and deploy key datasets on the AWS Cloud, including weather observations, weather forecasts, climate projection data, satellite imagery, hydrological data, air quality data, and ocean forecast data. These datasets are publicly available to anyone.

In addition, ASDI provides cloud grants to those interested in exploring the use of AWS’ technology and scalable infrastructure to solve big, long-term sustainability challenges with this data. The dual-pronged approach allows sustainability researchers to analyze massive amounts of data in mere minutes, regardless of where they are in the world or how much local storage space or computing capacity they can access.

Nashlie Sephus, manager, applied science

sephus.jpg
Nashlie Sephus, applied scientist, Amazon Web Services machine learning team.
Credit: Terrence Wells@PoetWilliamsPhotography

Sephus is an applied scientist on AWS’s artificial intelligence team, focusing on computer vision. In this role, Sephus focuses on the fairness and accuracy of the team’s algorithms. Sephus formerly led the Amazon Visual Search team in Atlanta, which launched visual search for replacement parts on the Amazon Shopping app in June 2018. This technology was a result of former startup Partpic (Atlanta) being acquired by Amazon, for which she was the chief technology officer (CTO). Prior to working at Partpic, she received her PhD in 2014 from the School of Electrical and Computer Engineering at the Georgia Institute of Technology. She received her bachelor’s degree in computer engineering in 2007 from Mississippi State University.

Innovations I find exciting

Since the onset of machine learning and artificial intelligence, neural networks (such as convolutional neural networks (CNNs), and generative adversarial networks (GANs), etc.) and learning algorithms have always excited me. It’s being able to quickly and automatically draw patterns from data, whether it be images, video, or audio at scale, that fascinates me. Since music was my first love (along with karaoke!), music information retrieval has always been a passion of mine. These innovations, when used responsibly and fairly, are able to benefit people in their everyday activities.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!