Women's History Month 2020.png
Credit: Glynis Condon

Four women from AWS who are making machine learning accessible to all developers

From scientific research to product management and marketing, women are spearheading AWS’s mission to put the power of machine learning into the hands of all developers.

From scientific research to product management and marketing, women are spearheading AWS’s mission to put the power of machine learning into the hands of all developers.

AWS DeepLens enables developers to get familiar with computer vision. AWS DeepRacer is a fully autonomous 1/18th scale race car that allows developers to get hands on with reinforcement learning. And AWS DeepComposer enables developers to learn generative AI. AWS’s mission to democratize machine learning resonates with all four women featured in this article, published on International Women's Day 2020. At some stage in their education or career, each of them moved from technical fields to pursue careers in artificial intelligence. Their journeys mirror that of the thousands of developers who are getting hands on with machine learning with the “Deep” family of products.

For all four women, early exposure during childhood sparked a lifelong love for science. However, equally critical was seeing how science can make an impact in people’s lives – a tenet that is also central to scientific innovation at Amazon.

Sahika Genc, senior applied scientist

Sahika Genc
Sahika Genc, Amazon principal applied scientist
Credit: Alexandra Tatarzyn

Sahika Genc is a senior applied scientist focusing on AWS DeepRacer. Genc’s parents laid the foundation for a career in science at a young age. “My father is an electrical engineer. He wanted to spend more time with the family, and decided to work from home on a regular basis. To do that effectively, he couldn’t have my sister and I running around the house. So he purchased a Commodore. To keep me occupied, he asked me to type commands from a textbook into the computer, and program in Basic.”

Genc’s mother, who is an elementary school teacher, helped foster her interest in math.

“After I completed first grade, I received about average grades in reading and writing. My mother thought I might be more interested in math. And she was right.”

Genc remembers being struck by the electrical units that her father made for cars.

“They reminded me how my father’s work made a positive impact in how we lead our lives.” Genc’s desire to build real-world systems led her to pursue a PhD in computer and control systems. She studied not only the systems that had mechanical components, but also the algorithms that gave them instructions on how to work. Genc focused on finite state machines, which are mathematical models of computation. Finite state machines are at the heart of hidden Markov models that are widely used in in reinforcement learning.

When she joined Amazon, Genc wrote the working backwards document on cloud robotics.Genc says that it’s especially important for young girls to get hands on with new technologies. “In the early days of computing, many of the computer scientists were women,” Genc says. “We can do for our daughters what my parents did for me. They made sure I got hands on with computers – this not only made me familiar with the technology, but it also made me more resilient. It taught me in a very real way, that when you’re trying to create something, you will fail nine times of ten. The important thing is not to give up.”

When you’re trying to create something, you will fail nine times of ten. The important thing is not to give up.
Sahika Genc, senior applied scientist

Ambika Pajjuri, product leader

Ambika Pajjuri
Ambika Pajjuri, product leader, AWS AI

Ambika Paijuri, a product leader for AWS’ Deep product line, notes that a recent Gartner Group report on cloud AI developer services suggests that by 2023, 40 percent of enterprise development teams will be using automated machine learning services to build models that add AI capabilities to their applications, up from 2 percent in 2019.

“That’s why all of us within AWS believe it’s imperative that we provide the tools, services and products that enable developers to get ready for this growth.”

Pajjuri’ s mother, a meteorologist, was an inspiration who made her think about clouds and why the sky was blue (she knew how to say cumulonimbus before she knew how to write). Pajjuri developed a love for engineering at an early age. However, she transitioned to a broader, product-focused role in the course of her career.

“I had completed my master’s with a focus on networking and telecommunications,” Pajjuri says. “However, I found myself getting interested in not just the engineering work, but also in working across the breadth of the customer experience.”

At mobile technology provider Airvana, Pajjuri helped develop the mobile data services that we take for granted in our cell phones. She also helped pioneer the development of femtocells and wireless access for cellphones – used even today to improve wireless coverage in our homes. At Amazon, Pajjuri has been a product leader on the Echo family of devices, where she’s led the development of several Echo devices (Echo Input, Echo Flex, Echo Auto), and Alexa’s multi-room music feature. Her work in the field of artificial intelligence further drove her interest in natural language processing – following which, a role with the AWS AI organization was a natural progression.

Pajjuri advises her team members to constantly meet with customers. Pajjuri’s counsel to her team comes from a very real place. After all, staying focused on the customer is central to her career journey. It led to her transition to a career in product management.

For Pajjuri, there is no substitute to hands-on experience. “When you’re a manager of a product team, it’s important to understand the technical aspects at a fundamental level,” Pajjuri says. “When I began, I took courses like Andrew Ng’s machine learning courses. Today, developers can also turn to AWS DeepLens, AWS DeepRacer and AWS DeepComposer!”

Jyothi Nookula, product owner

jyothi.JPG
Jyothi Nookula, product owner, AWS AI

Nookula. a member of Pajjuri’s team, is a product management lead who owned the first product, AWS DeepLens, and worked most recently on AWS DeepComposer. In her roles, Nookula works with tech, hardware and business teams to understand customer needs, prioritize features, and make decisions on a wide variety of matters ranging from identifying chip providers to finalizing the user interface design.

Nookula remembers discussing X-rays and physiology at the dinner table – conversations that sparked a lifelong love for science and engineering.

After her education, Nookula’s work led her in a more unexpected direction. She found herself collaborating with industry-leading scientists to develop machine learning algorithms that could predict your real biological age based on your DNA (versus just your physical age). Nookula won an Innocentive worldwide competition for her work, in addition to attracting interest from leading corporations in the healthcare space. Nookula’s interest in machine learning intensified when she was a product manager for printing company 3D systems.

“We were using 3D printers to print the most unexpected objects from dentures to models of the human heart, and even chocolates,” Nookula says. “Machine learning has an important role to play in shaping the parts of 3D printed components.”

Nookula joined Amazon in 2016; the company’s customer-obsessed approach to science was critical to her decision to join the company. Today, as part of her role, Nookula has met with developers from a large number of enterprises.

Every Deep product is explicitly designed to get developers hands on with machine learning. This philosophy resonates with Nookula – as getting hands on has been instrumental to their career progression into artificial intelligence. Nookula gives the example of when she used to commute to the Seattle offices during the early days of her career at Amazon.

“I am the kind of person who likes to do things hands on. When I joined Amazon, I built a 3D self-driving car simulator using a Go Pro camera. I used to operate the car every day during my walk to work. My confidence grew with every accomplishment, major or otherwise. After a few months, I felt bold enough to reach out to Dr. Matt Wood about my interest and prior work in AI.”

Alexandra Bush, marketing lead

AlexandraBush.jfif
Alexandra Bush, marketing leader, AWS AI

Alexandra Bush leads product marketing for the AWS Deep Device family of products. She says that their group’s mission is an important and urgent one.

“The World Economic Forum estimates that artificial intelligence could create up to 58 million new jobs in the next few years,” says Bush. “And there were less than 300,000 skilled AI engineers at the end of 2018.”

Bush’s marketing team focuses on the developer experience, and the different ways they experience the product.

“We want to deliver an educational experience, but also make sure that we’re making it fun and engaging.”

Prior to Amazon, Bush worked at Intel for 13 years in their sales and marketing organization. At Intel, she moved from a business planning and operations role to partnering with customers on developing joint go-to-market strategies. In the course of her career at Intel, she worked with Amazon Alexa and AWS teams to develop joint marketing campaigns for products like the Echo.

“Even in those early days, it was exciting to see that artificial intelligence was a very real thing that’s going to have an impact on the lives of millions of people. I've always had an interest in technology and how technology can help businesses. It’s really fulfilling to develop campaigns like the AWS DeepRacer League with clear and compelling messaging that helps developers get hands-on with machine learning in fun and engaging ways.”

The results of AWS’ customer-obsessed approach are clear to see. Organizations like Morningstar have kicked off the first company-wide internal Amazon Web Services (AWS) DeepRacer competition.

AI can be complex, but at AWS, we’re making a concerted effort to help people follow their passions and interests. When you do that, you can help people realize their career goals across the world.
Alexandra Bush, marketing lead

“It’s great to see Morningstar is investing in machine learning to automate data-collection processes, enabling fresher, almost real-time data while freeing resources to work on newer data sets,” says Bush.

“AI can be complex, but at AWS, we’re making a concerted effort to help people follow their passions and interests. When you do that, you can help people realize their career goals across the world.”

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.