Halo App Body Feature.png
With Amazon Halo's Body feature, individuals can measure their own body fat percentage and track it through a personalized 3D model. To achieve this, Amazon scientists used computer vision, artificial intelligence, and creative problem-solving.

The science behind the Halo Body feature

Scientists discuss the challenges in developing a system that can accurately estimate body fat percentage and create personalized 3D avatars of users from smartphone photos.

With Amazon Halo, a health and wellness membership, individuals can measure their own body fat percentage (BFP) and track it through a personalized 3D model. This level of scanning is usually only possible with expensive and sophisticated machines, but Halo’s Body feature makes it available to anyone with a smartphone via the Halo app. To achieve this, Amazon scientists used ideas from computer vision, computer graphics, artificial intelligence, and creative problem-solving.

The science and engineering team had to deal with two challenges when developing the Body feature: first, estimate BFP from smartphone photos without any other direct measurements; second, create a personalized 3D model of the user’s body.

Solutions to both problems involved a combination of deep neural networks, which are capable of learning tasks by identifying patterns in large amounts of data, and classical algorithms in computer vision and computer graphics.

Estimating body fat percentage from images

Estimating body fat percentage is a complex process. At-home smart scales do not directly measure body fat, but analyze electrical resistance in the body and use equations to convert that to BFP. Based on how hydrated you are throughout the day, this electrical resistance can fluctuate wildly, leading to high errors in BFP.

Amazon Halo adds Movement Health feature
Movement Health is based on functional fitness, which is your body’s readiness to execute everyday movements like bending, reaching, lifting, twisting, pulling, pushing, and walking. Learn more about how Movement Health works.

Commercial-grade measurement tools, such as hydrostatic dunk tanks and air displacement plethysmography, measure body volume that is subsequently converted to BFP and are more accurate than at-home smart scales, but require access to a trainer or special facility, and each scan costs money. Dual-energy X-ray absorptiometry (DXA) is considered the clinical gold standard for body composition and widely used, but these machines require a prescription and can cost as much as $80 per scan.

“All these different methods try to estimate BFP through indirect measures,” said Amit Agrawal, an Amazon principal scientist who has worked on Amazon Halo. “Borrowing the idea of indirect measurement, we challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.”

We challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.
Amit Agrawal

The solution: develop a technology utilizing convolutional neural networks (CNN), a class of deep neural networks commonly applied to analyzing images, and semi-supervised learning, which is a machine learning approach to train models with limited ground truth.

The input for the machine learning model is the photos captured from the smartphone, and the output is a number that tells you the body fat percentage. To train the model, it would typically be necessary to collect photos from many users in different scanning conditions and their actual BFP. The problem: it would be too expensive to use the DXA method.

Instead, the team pre-trained a CNN to learn a representation of the human body, which can extract discriminative features from images. The network analyzes the overall shape and details of the body from the images to extract visual features that are relevant to body composition. Then, data from actual DXA scans is used to fine-tune this network via semi-supervised learning.

A recent clinical study, whose results haven’t been published yet, determined that Body is nearly twice as accurate as smart scales in measuring BFP when using DXA as the ground truth.

Building personalized 3D avatars from images

Until recently, if you wanted to have a virtual model of your own body, you would have to stand in a room-sized 3D scanner with multiple synchronized high-end cameras around you. These expensive systems are used for applications in animation and gaming, but aren’t generally available to consumers.

Scientists on the Halo team undertook the ambitious goal of developing a tool capable of producing a 3D virtual representation of a customer’s body from a simple set of smartphone photos.

To do that, they trained a deep neural network which estimates the shape and pose parameters of the underlying statistical model from the captured photos. Again, the key challenge was acquiring the data necessary to train the model.

Learn more about how Amazon Halo can help you achieve a healthier lifestyle.

“You would need the image of a person, as well as the 3D model of the same person captured at the same time, to train this model. That would be very expensive, because you’d have to capture data on a lot of different people with different ethnicity, age, gender, and all those variations,” Agrawal said.

To solve that problem, they decided that instead of building an end-to-end system (from the photo directly to the 3D avatar) they would build a system with two modules. The first starts from the original photo to obtain a silhouette of the user by segmenting the person from the background, producing a black and white two-dimensional image of the body shape.

The second module transforms the silhouette image into the 3D avatar. At this stage, the team decided to use synthetic data instead of the expensive 3D scans. The synthetic images were generated using graphics-rendering software that utilizes 3D models to generate their corresponding 2D silhouettes. Then they used these synthetic examples to train the system to predict 3D models from the silhouettes.

With this process, the Body feature can create personalized 3D body models of customers, so they can keep track of body changes in their health journey. They can also simulate how their bodies will change at different levels of body fat.

We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health.
Prakash Ramu

“We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health,” said Prakash Ramu, an Amazon senior manager of applied science.  

Ramu, who has 13 years of experience in computer vision and image processing, noted that while Body doesn’t have the same level of fidelity as traditional 3D scanners for things such as muscle definition, it has high accuracy for overall shape and body proportions that are relevant for long-term health, providing an accessible and accurate in-home tool for people interested in measuring and tracking their body shape.

Ramu also noted that privacy is foundational to the design of the Halo. The body scan images used to build the 3D avatar and to measure BFP are automatically deleted from the cloud after processing and, after that, they only live on the customer’s phone unless they have explicitly opted in to cloud backup.

Halo Body’s potential to impact people’s health

One of the most important breakthroughs of the Body feature is that it grants easy access to a health indicator that is much more useful than body mass index (BMI), notes Antonio Criminisi, senior manager of applied science on the Halo team.

Doctors have known for many years that body fat percentage is a better indicator than BMI.
Antonio Criminisi

“Doctors have known for many years that body fat percentage is a better indicator than BMI, because it better predicts medical risks of cardiovascular disease, or even certain types of cancer,” he said. “This issue is particularly important when you become older. At that stage, weight loss tends to be associated with losing muscle mass, and that’s often not good news.”

Criminisi, who has been working for several years in computer vision and machine learning applied to the analysis of medical images, says most often lack of access is what prevents people from using BFP as a health indicator.

“What we’ve done is bridge that gap and make this technology a lot cheaper and easy to use,” he said.

The team knows it still has challenges ahead, but say they’re constantly looking to improve Halo.

“Building a customer-facing product for health applications is inherently challenging due to lack of data and a high bar on clinical accuracy and privacy,” Ramu said. “By building upon ideas in deep learning, classical computer vision and computer graphics, we have tackled the hard challenges in delivering a new product that reaches higher accuracy than alternatives such as bio-impedance scales. We are incredibly excited to share this technology with our customers and will continue to improve it over time to keep delighting our customers with exciting and useful new features.”

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.