Halo App Body Feature.png
With Amazon Halo's Body feature, individuals can measure their own body fat percentage and track it through a personalized 3D model. To achieve this, Amazon scientists used computer vision, artificial intelligence, and creative problem-solving.

The science behind the Halo Body feature

Scientists discuss the challenges in developing a system that can accurately estimate body fat percentage and create personalized 3D avatars of users from smartphone photos.

With Amazon Halo, a health and wellness membership, individuals can measure their own body fat percentage (BFP) and track it through a personalized 3D model. This level of scanning is usually only possible with expensive and sophisticated machines, but Halo’s Body feature makes it available to anyone with a smartphone via the Halo app. To achieve this, Amazon scientists used ideas from computer vision, computer graphics, artificial intelligence, and creative problem-solving.

The science and engineering team had to deal with two challenges when developing the Body feature: first, estimate BFP from smartphone photos without any other direct measurements; second, create a personalized 3D model of the user’s body.

Solutions to both problems involved a combination of deep neural networks, which are capable of learning tasks by identifying patterns in large amounts of data, and classical algorithms in computer vision and computer graphics.

Estimating body fat percentage from images

Estimating body fat percentage is a complex process. At-home smart scales do not directly measure body fat, but analyze electrical resistance in the body and use equations to convert that to BFP. Based on how hydrated you are throughout the day, this electrical resistance can fluctuate wildly, leading to high errors in BFP.

Amazon Halo adds Movement Health feature
Movement Health is based on functional fitness, which is your body’s readiness to execute everyday movements like bending, reaching, lifting, twisting, pulling, pushing, and walking. Learn more about how Movement Health works.

Commercial-grade measurement tools, such as hydrostatic dunk tanks and air displacement plethysmography, measure body volume that is subsequently converted to BFP and are more accurate than at-home smart scales, but require access to a trainer or special facility, and each scan costs money. Dual-energy X-ray absorptiometry (DXA) is considered the clinical gold standard for body composition and widely used, but these machines require a prescription and can cost as much as $80 per scan.

“All these different methods try to estimate BFP through indirect measures,” said Amit Agrawal, an Amazon principal scientist who has worked on Amazon Halo. “Borrowing the idea of indirect measurement, we challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.”

We challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.
Amit Agrawal

The solution: develop a technology utilizing convolutional neural networks (CNN), a class of deep neural networks commonly applied to analyzing images, and semi-supervised learning, which is a machine learning approach to train models with limited ground truth.

The input for the machine learning model is the photos captured from the smartphone, and the output is a number that tells you the body fat percentage. To train the model, it would typically be necessary to collect photos from many users in different scanning conditions and their actual BFP. The problem: it would be too expensive to use the DXA method.

Instead, the team pre-trained a CNN to learn a representation of the human body, which can extract discriminative features from images. The network analyzes the overall shape and details of the body from the images to extract visual features that are relevant to body composition. Then, data from actual DXA scans is used to fine-tune this network via semi-supervised learning.

A recent clinical study, whose results haven’t been published yet, determined that Body is nearly twice as accurate as smart scales in measuring BFP when using DXA as the ground truth.

Building personalized 3D avatars from images

Until recently, if you wanted to have a virtual model of your own body, you would have to stand in a room-sized 3D scanner with multiple synchronized high-end cameras around you. These expensive systems are used for applications in animation and gaming, but aren’t generally available to consumers.

Scientists on the Halo team undertook the ambitious goal of developing a tool capable of producing a 3D virtual representation of a customer’s body from a simple set of smartphone photos.

To do that, they trained a deep neural network which estimates the shape and pose parameters of the underlying statistical model from the captured photos. Again, the key challenge was acquiring the data necessary to train the model.

Learn more about how Amazon Halo can help you achieve a healthier lifestyle.

“You would need the image of a person, as well as the 3D model of the same person captured at the same time, to train this model. That would be very expensive, because you’d have to capture data on a lot of different people with different ethnicity, age, gender, and all those variations,” Agrawal said.

To solve that problem, they decided that instead of building an end-to-end system (from the photo directly to the 3D avatar) they would build a system with two modules. The first starts from the original photo to obtain a silhouette of the user by segmenting the person from the background, producing a black and white two-dimensional image of the body shape.

The second module transforms the silhouette image into the 3D avatar. At this stage, the team decided to use synthetic data instead of the expensive 3D scans. The synthetic images were generated using graphics-rendering software that utilizes 3D models to generate their corresponding 2D silhouettes. Then they used these synthetic examples to train the system to predict 3D models from the silhouettes.

With this process, the Body feature can create personalized 3D body models of customers, so they can keep track of body changes in their health journey. They can also simulate how their bodies will change at different levels of body fat.

We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health.
Prakash Ramu

“We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health,” said Prakash Ramu, an Amazon senior manager of applied science.  

Ramu, who has 13 years of experience in computer vision and image processing, noted that while Body doesn’t have the same level of fidelity as traditional 3D scanners for things such as muscle definition, it has high accuracy for overall shape and body proportions that are relevant for long-term health, providing an accessible and accurate in-home tool for people interested in measuring and tracking their body shape.

Ramu also noted that privacy is foundational to the design of the Halo. The body scan images used to build the 3D avatar and to measure BFP are automatically deleted from the cloud after processing and, after that, they only live on the customer’s phone unless they have explicitly opted in to cloud backup.

Halo Body’s potential to impact people’s health

One of the most important breakthroughs of the Body feature is that it grants easy access to a health indicator that is much more useful than body mass index (BMI), notes Antonio Criminisi, senior manager of applied science on the Halo team.

Doctors have known for many years that body fat percentage is a better indicator than BMI.
Antonio Criminisi

“Doctors have known for many years that body fat percentage is a better indicator than BMI, because it better predicts medical risks of cardiovascular disease, or even certain types of cancer,” he said. “This issue is particularly important when you become older. At that stage, weight loss tends to be associated with losing muscle mass, and that’s often not good news.”

Criminisi, who has been working for several years in computer vision and machine learning applied to the analysis of medical images, says most often lack of access is what prevents people from using BFP as a health indicator.

“What we’ve done is bridge that gap and make this technology a lot cheaper and easy to use,” he said.

The team knows it still has challenges ahead, but say they’re constantly looking to improve Halo.

“Building a customer-facing product for health applications is inherently challenging due to lack of data and a high bar on clinical accuracy and privacy,” Ramu said. “By building upon ideas in deep learning, classical computer vision and computer graphics, we have tackled the hard challenges in delivering a new product that reaches higher accuracy than alternatives such as bio-impedance scales. We are incredibly excited to share this technology with our customers and will continue to improve it over time to keep delighting our customers with exciting and useful new features.”

Related content

US, CA, Santa Clara
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solutions About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | Santa Clara, CA, USA
US, NY, New York
We are looking for a motivated and experienced Senior Data Scientist with experience in Machine Learning (ML), Artificial Intelligence (AI), Big Data, and Service Oriented Architecture with deep understanding in advertising businesses, to be part of a team of talented scientists and engineers to innovate, iterate, and solve real world problem with cutting-edge AWS technologies. In this role, you will take a leading role in defining the problem, innovating the ML/AI solutions, and information the tech roadmap. You will join a cross-functional, fun-loving team, working closely with scientists and engineers in a daily basis. You will innovate on behalf of our customers by prototyping, delivering functional proofs of concept (POCs), and partnering with our engineers to productize and scale successful POCs. If you are passionate about creating the future, come join us as we have fun, and make history. Key job responsibilities - Define and execute a research & development roadmap that drives data-informed decision making for marketers and advertisers - Establish and drive data hygiene best practices to ensure coherence and integrity of data feeding into production ML/AI solutions - Collaborate with colleagues across science and engineering disciplines for fast turnaround proof-of-concept prototyping at scale - Partner with product managers and stakeholders to define forward-looking product visions and prospective business use cases - Drive and lead of culture of data-driven innovations within and outside across Amazon Ads Marketing orgs About the team Marketing Decision Science provides science products to enable Amazon Ads Marketing to deliver relevant and compelling guidance across marketing channels to prospective and active advertisers for success on Amazon. We own the product, technology and deployment roadmap for AI- and analytics-powered products across Amazon Ads Marketing. We analyze the needs, experiences, and behaviors of Amazon advertisers at petabytes scale, to deliver the right marketing communications to the right advertiser at the right team to help them make the data-informed advertising decisions. Our science-based products enable applications and synergies across Ads organization, spanning marketing, product, and sales use cases. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Are you excited about developing models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a collaborative Applied Scientist to focus on computer vision machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Bellevue
Looking for your next challenge? North America Sort Centers (NASC) are experiencing growth and looking for a skilled, highly motivated Data Scientist to join the NASC Engineering Data, Product and Simulation Team. The Sort Center network is the critical Middle-Mile solution in the Amazon Transportation Services (ATS) group, linking Fulfillment Centers to the Last Mile. The experience of our customers is dependent on our ability to efficiently execute volume flow through the middle-mile network. Key job responsibilities The Senior Data Scientist will design and implement solutions to address complex business questions using simulation. In this role, you will apply advanced analysis techniques and statistical concepts to draw insights from massive datasets, and create intuitive simulations and data visualizations. You can contribute to each layer of a data solution – you work closely with process design engineers, business intelligence engineers and technical product managers to obtain relevant datasets and create simulation models, and review key results with business leaders and stakeholders. Your work exhibits a balance between scientific validity and business practicality. On this team, you will have a large impact on the entire NASC organization, with lots of opportunity to learn and grow within the NASC Engineering team. This role will be the first dedicated simulation expert, so you will have an exceptional opportunity to define and drive vision for simulation best practices on our team. To be successful in this role, you must be able to turn ambiguous business questions into clearly defined problems, develop quantifiable metrics and deliver results that meet high standards of data quality, security, and privacy. About the team NASC Engineering’s Product and Analytics Team’s sole objective is to develop tools for under the roof simulation and optimization, supporting the needs of our internal and external stakeholders (i.e Process Design Engineering, NASC Engineering, ACES, Finance, Safety and Operations). We develop data science tools to evaluate what-if design and operations scenarios for new and existing sort centers to understand their robustness, stability, scalability, and cost-effectiveness. We conceptualize new data science solutions, using optimization and machine learning platforms, to analyze new and existing process, identify and reduce non-value added steps, and increase overall performance and rate. We work by interfacing with various functional teams to test and pilot new hardware/software solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
IN, KA, Bangalore
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of NLP models (e.g. LSTM, transformer based models) or CV models (e.g. CNN, AlexNet, ResNet) and where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video. We are open to hiring candidates to work out of one of the following locations: Bangalore, KA, IND
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. We are open to hiring candidates to work out of one of the following locations: London, GBR
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. We are open to hiring candidates to work out of one of the following locations: London, GBR