Halo App Body Feature.png
With Amazon Halo's Body feature, individuals can measure their own body fat percentage and track it through a personalized 3D model. To achieve this, Amazon scientists used computer vision, artificial intelligence, and creative problem-solving.

The science behind the Halo Body feature

Scientists discuss the challenges in developing a system that can accurately estimate body fat percentage and create personalized 3D avatars of users from smartphone photos.

With Amazon Halo, a health and wellness membership, individuals can measure their own body fat percentage (BFP) and track it through a personalized 3D model. This level of scanning is usually only possible with expensive and sophisticated machines, but Halo’s Body feature makes it available to anyone with a smartphone via the Halo app. To achieve this, Amazon scientists used ideas from computer vision, computer graphics, artificial intelligence, and creative problem-solving.

The science and engineering team had to deal with two challenges when developing the Body feature: first, estimate BFP from smartphone photos without any other direct measurements; second, create a personalized 3D model of the user’s body.

Solutions to both problems involved a combination of deep neural networks, which are capable of learning tasks by identifying patterns in large amounts of data, and classical algorithms in computer vision and computer graphics.

Estimating body fat percentage from images

Estimating body fat percentage is a complex process. At-home smart scales do not directly measure body fat, but analyze electrical resistance in the body and use equations to convert that to BFP. Based on how hydrated you are throughout the day, this electrical resistance can fluctuate wildly, leading to high errors in BFP.

Amazon Halo adds Movement Health feature
Movement Health is based on functional fitness, which is your body’s readiness to execute everyday movements like bending, reaching, lifting, twisting, pulling, pushing, and walking. Learn more about how Movement Health works.

Commercial-grade measurement tools, such as hydrostatic dunk tanks and air displacement plethysmography, measure body volume that is subsequently converted to BFP and are more accurate than at-home smart scales, but require access to a trainer or special facility, and each scan costs money. Dual-energy X-ray absorptiometry (DXA) is considered the clinical gold standard for body composition and widely used, but these machines require a prescription and can cost as much as $80 per scan.

“All these different methods try to estimate BFP through indirect measures,” said Amit Agrawal, an Amazon principal scientist who has worked on Amazon Halo. “Borrowing the idea of indirect measurement, we challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.”

We challenged ourselves to build a computer vision system that can accurately predict BFP via visual features measured from images such as overall body shape and details of the body such as muscle definition and fat folds.
Amit Agrawal

The solution: develop a technology utilizing convolutional neural networks (CNN), a class of deep neural networks commonly applied to analyzing images, and semi-supervised learning, which is a machine learning approach to train models with limited ground truth.

The input for the machine learning model is the photos captured from the smartphone, and the output is a number that tells you the body fat percentage. To train the model, it would typically be necessary to collect photos from many users in different scanning conditions and their actual BFP. The problem: it would be too expensive to use the DXA method.

Instead, the team pre-trained a CNN to learn a representation of the human body, which can extract discriminative features from images. The network analyzes the overall shape and details of the body from the images to extract visual features that are relevant to body composition. Then, data from actual DXA scans is used to fine-tune this network via semi-supervised learning.

A recent clinical study, whose results haven’t been published yet, determined that Body is nearly twice as accurate as smart scales in measuring BFP when using DXA as the ground truth.

Building personalized 3D avatars from images

Until recently, if you wanted to have a virtual model of your own body, you would have to stand in a room-sized 3D scanner with multiple synchronized high-end cameras around you. These expensive systems are used for applications in animation and gaming, but aren’t generally available to consumers.

Scientists on the Halo team undertook the ambitious goal of developing a tool capable of producing a 3D virtual representation of a customer’s body from a simple set of smartphone photos.

To do that, they trained a deep neural network which estimates the shape and pose parameters of the underlying statistical model from the captured photos. Again, the key challenge was acquiring the data necessary to train the model.

Learn more about how Amazon Halo can help you achieve a healthier lifestyle.

“You would need the image of a person, as well as the 3D model of the same person captured at the same time, to train this model. That would be very expensive, because you’d have to capture data on a lot of different people with different ethnicity, age, gender, and all those variations,” Agrawal said.

To solve that problem, they decided that instead of building an end-to-end system (from the photo directly to the 3D avatar) they would build a system with two modules. The first starts from the original photo to obtain a silhouette of the user by segmenting the person from the background, producing a black and white two-dimensional image of the body shape.

The second module transforms the silhouette image into the 3D avatar. At this stage, the team decided to use synthetic data instead of the expensive 3D scans. The synthetic images were generated using graphics-rendering software that utilizes 3D models to generate their corresponding 2D silhouettes. Then they used these synthetic examples to train the system to predict 3D models from the silhouettes.

With this process, the Body feature can create personalized 3D body models of customers, so they can keep track of body changes in their health journey. They can also simulate how their bodies will change at different levels of body fat.

We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health.
Prakash Ramu

“We're making 3D scanning accessible, particularly in the context of human body composition and how it relates to long-term health,” said Prakash Ramu, an Amazon senior manager of applied science.  

Ramu, who has 13 years of experience in computer vision and image processing, noted that while Body doesn’t have the same level of fidelity as traditional 3D scanners for things such as muscle definition, it has high accuracy for overall shape and body proportions that are relevant for long-term health, providing an accessible and accurate in-home tool for people interested in measuring and tracking their body shape.

Ramu also noted that privacy is foundational to the design of the Halo. The body scan images used to build the 3D avatar and to measure BFP are automatically deleted from the cloud after processing and, after that, they only live on the customer’s phone unless they have explicitly opted in to cloud backup.

Halo Body’s potential to impact people’s health

One of the most important breakthroughs of the Body feature is that it grants easy access to a health indicator that is much more useful than body mass index (BMI), notes Antonio Criminisi, senior manager of applied science on the Halo team.

Doctors have known for many years that body fat percentage is a better indicator than BMI.
Antonio Criminisi

“Doctors have known for many years that body fat percentage is a better indicator than BMI, because it better predicts medical risks of cardiovascular disease, or even certain types of cancer,” he said. “This issue is particularly important when you become older. At that stage, weight loss tends to be associated with losing muscle mass, and that’s often not good news.”

Criminisi, who has been working for several years in computer vision and machine learning applied to the analysis of medical images, says most often lack of access is what prevents people from using BFP as a health indicator.

“What we’ve done is bridge that gap and make this technology a lot cheaper and easy to use,” he said.

The team knows it still has challenges ahead, but say they’re constantly looking to improve Halo.

“Building a customer-facing product for health applications is inherently challenging due to lack of data and a high bar on clinical accuracy and privacy,” Ramu said. “By building upon ideas in deep learning, classical computer vision and computer graphics, we have tackled the hard challenges in delivering a new product that reaches higher accuracy than alternatives such as bio-impedance scales. We are incredibly excited to share this technology with our customers and will continue to improve it over time to keep delighting our customers with exciting and useful new features.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, WA, Seattle
The Global Media Entertainment Science team uses state of the art economics and machine learning models to provide Amazon’s entertainment businesses guidance on strategically important questions. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Product Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. The Search Relevance team focuses on several technical areas for improving search quality. In this role, you will invent universally applicable signals and algorithms for training machine-learned ranking models. The relevance improvements you make will help millions of customers discover the products they want from a catalog containing millions of products. You will work on problems such as predicting the popularity of new products, developing new ranking features and algorithms that capture unique characteristics, and analyzing the differences in behavior of different categories of customers. The work will span the whole development pipeline, including data analysis, prototyping, A/B testing, and creating production-level components. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world’s leading Internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Please visit https://www.amazon.science for more information
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Do you have a strong machine learning background and want to help build new speech and language technology? Amazon is looking for PhD students who are ready to tackle some of the most interesting research problems on the leading edge of natural language processing. We are hiring in all areas of spoken language understanding: NLP, NLU, ASR, text-to-speech (TTS), and more! A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will develop and implement novel scalable algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, NLP, search, and deep learning. You will work side-by-side with global experts in speech and language to solve challenging groundbreaking research problems on production scale data. The ideal candidate must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon has positions available for Natural Language Processing & Speech Intern positions in multiple locations across the United States. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. Please visit our website to stay updated with the research our teams are working on: https://www.amazon.science/research-areas/conversational-ai-natural-language-processing
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. The Research team at Amazon works passionately to apply cutting-edge advances in technology to solve real-world problems. Do you have a strong machine learning background and want to help build new speech and language technology? Do you welcome the challenge to apply optimization theory into practice through experimentation and invention? Would you love to help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, etc? At Amazon we hire research science interns to work in a number of domains including Operations Research, Optimization, Speech Technologies, Computer Vision, Robotics, and more! As an intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using mathematical programming techniques for complex problems, implement prototypes and work with massive datasets. Amazon has a culture of data-driven decision-making, and the expectation is that analytics are timely, accurate, innovative and actionable. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a Masters student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
CA, ON, Toronto
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Are you a PhD student interested in machine learning, natural language processing, computer vision, automated reasoning, or robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for Masters or PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. We are looking for PhD students excited about working on Automated Reasoning or Storage System problems at the intersection of theory and practice to drive innovation and provide value for our customers. AWS Automated Reasoning teams deliver tools that are called billions of times daily. Amazon development teams are integrating automated-reasoning tools such as Dafny, P, and SAW into their development processes, raising the bar on the security, durability, availability, and quality of our products. AWS Automated Reasoning teams are changing how computer systems built on top of the cloud are developed and operated. AWS Automated Reasoning teams work in areas including: Distributed proof search, SAT and SMT solvers, Reasoning about distributed systems, Automating regulatory compliance, Program analysis and synthesis, Security and privacy, Cryptography, Static analysis, Property-based testing, Model-checking, Deductive verification, compilation into mainstream programming languages, Automatic test generation, and Static and dynamic methods for concurrent systems. AWS Storage Systems teams manage trillions of objects in storage, retrieving them with predictable low latency, building software that deploys to thousands of hosts, achieving 99.999999999% (you didn’t read that wrong, that’s 11 nines!) durability. AWS storage services grapple with exciting problems at enormous scale. Amazon S3 powers businesses across the globe that make the lives of customers better every day, and forms the backbone for applications at all scales and in all industries ranging from multimedia to genomics. This scale and data diversity requires constant innovation in algorithms, systems and modeling. AWS Storage Systems teams work in areas including: Error-correcting coding and durability modeling, system and distributed system performance optimization and modeling, designing and implementing distributed, multi-tenant systems, formal verification and strong, practical assurances of correctness, bits-IOPS-Watts: the interplay between computation, performance, and energy, data compression - both general-purpose and domain specific, research challenges with storage media, both existing and emerging, and exploring the intersection between storage and quantum technologies. As an Applied Science Intern, you will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment who is comfortable with ambiguity. Amazon believes that scientific innovation is essential to being the world’s most customer-centric company. Our ability to have impact at scale allows us to attract some of the brightest minds in Automated Reasoning and related fields. Our scientists work backwards to produce innovative solutions that delight our customers. Please visit https://www.amazon.science (https://www.amazon.science/) for more information.
US, WA, Seattle
To ensure a great internship experience, please keep these things in mind. This is a full time internship and requires an individual to work 40 hours a week for the duration of the internship. Amazon requires an intern to be located where their assigned team is. Amazon is happy to provide relocation and housing assistance if you are located 50 miles or further from the office location. Help us develop the algorithms and models that power computer vision services at Amazon, such as Amazon Rekognition, Amazon Go, Visual Search, and more! We are combining computer vision, mobile robots, advanced end-of-arm tooling and high-degree of freedom movement to solve real-world problems at huge scale. As an intern, you will help build solutions where visual input helps the customers shop, anticipate technological advances, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. You will own the design and development of end-to-end systems and have the opportunity to write technical white papers, create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. For more information on the Amazon Science community please visit https://www.amazon.science