The photo shows an Amazon truck parked with the company logo and the word prime painted on the side
To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits.

The science behind Amazon Prime

Amazon’s scientists have developed a variety of scientific models to help customers get the most out of their membership.

In his 2020 shareholder letter, Jeff Bezos, executive chair of Amazon’s board of directors, shared that more than 200 million people around the world have a Prime membership — along with its attendant benefits.

Those include delivery benefits (like free one and two-day delivery), digital benefits (such as Prime Video and Amazon Music), and shopping benefits (including Prime Day member deals). Prime members are also able to download thousands of e-books, magazines and comics for free, get unlimited photo storage, order groceries online, and more.

Amazon is continually expanding and evolving its selection of Prime benefits to enhance the value for members. As Bezos wrote in an earlier shareholder letter: "We want Prime to be such a good value, you'd be irresponsible not to be a member.”

To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits. Using techniques derived from machine learning, structural econometrics, and other disciplines, they also help Amazon decide how to evolve Prime benefit offerings around the world.

Surface the most relevant Prime benefits to customers

When shoppers visit the Amazon Store, they are presented with a variety of Prime callouts with relevant benefits and related product information. Callouts for non-Prime members might outline the wide variety of benefits available, while Prime members might see more options to utilize their Prime benefits. For example, a Prime member visiting the detail page for the movie Jane Eyre might see a callout saying that the title is available for free on Prime Reading.

We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting.
Houssam Nassif

“We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting,” says Houssam Nassif, a principal applied scientist within Amazon’s consumer organization.

To make predictions about the callout that will most excite customers, the system maps item attributes (like brand, color, price, title, and category) to how often items are selected by customers. The models embedded in the system use Bayesian recommenders to make decisions on the most relevant content to surface. Bayesian inferences are used to make predictions about future events by updating prior hypotheses as more information becomes available.

However, there are limits to this approach. For example, relying exclusively on Bayesian methods to measure customer selections can bias results toward more popular items. For example, shoppers interested in Jane Eyre might also want to read new romance novels. The challenge: newer items have untrained model weights, which can cause the system to underestimate their true click probability.

“This experience would be similar to going to a music recommendation engine, and seeing only the chart toppers in your favorite categories,” Nassif explains. “To improve the diversity of recommendations, we have to overcome the classic exploitation-exploration dilemma by including relevant and popular items [exploitation] along with newer or long-tail items that scored higher than their expected value [exploration].”

To do this, the Prime ML team utilizes methods that allow the algorithm to update the “click-probability” score by using delayed feedback from customers.

Some of the recommender systems employed by the Prime team are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

“Adaptive systems allow us to focus the diversity of recommendations even further,” says Nassif.

Prime’s adaptive systems respond continually to evolving preferences across all Amazon customers. For example, classic-literature enthusiasts who read Jane Eyre will not see callouts for romance novels or romantic comedy movies unless they express some interest in other romance novels. Some of those recommender systems are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

Recommending content that customers love

Determining the most relevant Prime benefits to present to users is the first step. Prime’s scientists have also developed algorithms to determine which formats are most likely to appeal to customers.

“Every callout has multiple dimensions, which in turn presents a large number of decisions,” says Nassif. “Do customers like to see their name? Should the callout feature a single particular product? Or even a grouping of products? To make these decisions, we have to develop an accurate understanding of customer preferences.”

Callouts comprise multiple components: headline, body copy, an image (or images). They can also include other elements like customer reviews. Testing multiple variables is a combinatorial problem that can often cover a large decision space. This poses limitations on the speed of experiments designed to arrive at the layout customers prefer most.

To eliminate combinatorial explosions that can result from considering every possible combination, the models score a small subset of combinations before extrapolating their learnings to the larger universe of layouts that can be presented to customers. Conditioned by prior observations, the models are able to select the layout that has the highest probability of delivering the highest customer value.

Evolving the selection of Prime benefits

In addition to informing how customers receive recommendations about Prime as it exists today, scientists also influence how Prime will evolve as a membership. This work involves scientists from multiple disciplines collaborating closely to determine the best selection of benefits: from determining how best to reduce shipping speeds for Prime (including items eligible for the fastest speeds) to recommending which new podcasts Amazon Music should release.

Charlie Manzanares is a senior manager on the team that specializes in simulating how customers benefit from expansion of Prime benefits. Manzanares’s team comprises economists, applied scientists, research scientists, and business intelligence engineers who partner closely with product managers and software and data engineers.

Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference. Building these tools often involves inventing new science.
Charlie Manzanares

“Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference,” says Manzanares. “Building these tools often involves inventing new science, by involving scientists and engineers from a variety of backgrounds. We then utilize these tools to create scientific software at engineering scale. What’s exhilarating about this space is not just solving these scientific and technical challenges, but using these tools to make Prime better for members around the world. Moreover, the company relies on this information to make high-stakes investments. This adds an interesting layer of strategic management consulting to our work.”

Manzanares points to a recent innovation from Prime scientists that made modeling dynamic customer decisions easier.

“Prime members make ‘dynamic’ choices over whether, and when, to become and remain Prime members. Dynamic customer choices often involve tradeoffs between value and flexibility,” he explains.  “For example, in the US, most customers choose between joining Prime’s annual or monthly plans, or ending their membership or not joining Prime at all. Over time, this tradeoff results in many possible permutations of choices. For example, a member might choose monthly Prime for two months, then join annual Prime. Or they might choose monthly Prime for two months, remain non-Prime for three, then join monthly Prime for five more months, etc.”

Modeling the impact of these choice permutations in a way that is useful for counterfactual simulation is theoretically and computationally challenging.

The theoretical challenge is an “identification” problem, Manzanares explains. The identification problem makes it hard for scientists to determine which Prime feature caused members to make a particular choice.

“For example, did a member who engaged with Prime shipping and Prime Video choose to renew because they valued Prime shipping highly, but Prime Video less, or Prime Video highly, and Prime shipping less?” asks Manzanares. “This problem is common to both dynamic and ‘static’ choice problems (i.e., choice problems where choice values are not influenced by past choices). The computational problem — which is pervasive in dynamic choice settings — is generated by the sheer number of possible choices, which is labeled the ‘curse of dimensionality’ in dynamic programming literature.”

To overcome these challenges, the team combined new techniques from inverse reinforcement learning with an old assumption from structural econometrics. Inverse reinforcement learning is a machine learning paradigm popularized in the late 1990s and early 2000s.

As opposed to reinforcement learning, which learns behavioral “policies” through active experimentation, inverse reinforcement learning learns “reward” or “utility” functions from actual customer behavior. It then uses estimated utility functions to make choices in new settings. Structural econometrics is an older paradigm with a rich literature and has been used for these types of exercises since the 1940s.

"Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions” was published at the 2020 International Conference for Machine Learning.

“On the one hand, inverse reinforcement learning draws upon modern machine learning techniques. These techniques allow for rich approximations in complex settings,” says Manzanares. “On the other hand, structural econometrics has already solved many complex theoretical issues related to counterfactual simulation. These solutions often predate the development of modern machine learning and computation. This dichotomy creates opportunities for intellectual arbitrage between literatures.”

The team’s approach to the challenge is described in the paper “Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions,” which was published at the 2020 International Conference for Machine Learning.

“The findings presented in the paper are applicable across multiple fields,” says Manzanares. “That’s not surprising since the paper’s insights were made possible by collaboration across multiple disciplines.”

Prime scientists use inverse-reinforcement models to develop insights. These insights show how Prime should evolve to meet customer needs. For example, how should Prime evolve to best meet the needs of Gen Z, who engage more heavily with digital benefits (video, music, gaming)? How can grocery delivery and pickup maximize customer convenience?

These questions multiply as Prime expands globally. In international marketplaces — especially emerging ones — customer needs vary widely. For example, how might Prime serve both rural and urban customers in a marketplace like India, where needs among rural and urban customers might be very different? Experimentation, Manzanares notes, becomes critical.

 “The process of discovering what customers want across the world is a lot of fun,” he says. “Combine that with building cutting-edge science in partnership with extremely talented science, engineering, and business professionals, and this makes Prime a really rewarding place to be a scientist.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

US, WA, Seattle
Job summaryAmazon brings buyers and sellers together. Our retail customers depend on us to give them access to every product at the best possible price. Our sellers depend on us to give them a platform to launch their business into every home and marketplace. Making this happen is the mission of every engineer in Amazon's North America Consumer (NAC) organization.To this end, the Science team is tasked with:· Organizing available data sources, and creating detailed dictionaries of data that can be used in future analyses.· Partnering with product teams in evaluating the financial and operational impact of new product offerings.· Conducting research into optimization and machine learning algorithms which can be applied to solve business problems.· Partnering with other scientists in evaluating algorithms and suggestions from a business view point.· Carrying out independent data-backed initiatives that can be leveraged later on in the fields of network organization, costing and financial modeling of processes.In order to execute the above mandate we are on the look out for smart and qualified Data Scientists who will own projects in partnership with product and research teams as well as operate autonomously on independent initiatives that are expected to unlock benefits in the future. A past background in Statistics is necessary, along with advanced proficiency in languages such as Python and R.Key job responsibilitiesAs a Data Scientist, you are able to use a range of advanced analytical methodologies to solve challenging business problems when the solution is unclear. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as Redshift, Sagemaker, Lambda, S3, and EC2 with a variety of skillsets in Linear and Discrete Optimization, ML, NLP, Forecasting, Probabilistic ML and Causal ML. You will bring knowledge in many of these domains along with your own specialties and skillsets.
US, CA, Pasadena
Job summaryThe Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is hiring a Quantum Research Scientist to join a multi-disciplinary, fast-paced team of theoretical and experimental physicists, materials scientists, and hardware and software engineers pushing the forefront of quantum computing. The candidate should demonstrate a thorough knowledge of experimental measurement techniques as well as quantum mechanics theory.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilities* Contribute to fast-paced and agile research to help close the many orders of magnitude gap in gate error rates required for fault tolerant quantum computation* Design and perform experiments to characterize quantum devices in close collaboration with software and engineering teams* Develop models to understand and improve device performance* Effectively document results and communicate to a broad audience* Create robust software for implementation, automation, and analysis of measurements* Specify technical requirements in a cross-team collaboration using analytical arguments derived from physics theoryA day in the life* Analyze experimental data* Develop software to test and run new experiments on existing devices; collaborate with software engineers to achieve high code standard* Debug test setups to achieve high-quality data* Present results and cross-collaborate with others’ work* Perform code review for a colleague’s merge request
US, CA, Pasadena
Job summaryThe Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Test and Measurement group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental measurement techniques.Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilitiesIn this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources.
US, MA, Cambridge
Job summaryThe Alexa Artificial Intelligence (AI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology.Key job responsibilitiesAs an Applied Scientist with the Alexa AI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding.About the teamThe Alexa AI team has a mission to push the envelope in Natural Language Understanding (NLU). Specifically, we focus on incremental learning, continual learning and fairness, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Job summaryThe Alexa Artificial Intelligence (AI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Natural Language Understanding (NLU), Audio Signal Processing, text-to-speech (TTS), and Dialog Management, in order to provide the best-possible experience for our customers.Key job responsibilitiesAs an Applied Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding.
US, MA, Cambridge
Job summaryWant to transform the way people enjoy music, video, and radio? Come join the team that made Amazon Music, Spotify, Hulu, Netflix, Pandora, available to Alexa customers. We are innovating the way our customers interact with entertainment in the living room, on the go, and in the car. We are at the epicenter of the future of entertainment.Alexa Entertainment is looking for an Applied Scientist as we build a team of talented and passionate scientists for ASR (automatic speech recognition) and NLU (natural language understanding). As a Research Scientist, you will participate in the design, development, and evaluation of models and ML (machine learning) technology so that customers have the magical experience of entertainment via Alexa. You will help lay the foundation to move from directed interactions to learned behaviors that enable Alexa to proactively take action on behalf of the customer. And, you will have the satisfaction of working on a product your friends and family can relate to, and want to use every day. Like the world of smart phones less than 10 years ago, this is a rare opportunity to have a giant impact on the way people live.You will be part of a team delivering features that are highly anticipated by media and well received by our customers.
US, VA, Arlington
Job summaryThe People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for a research scientist with expertise in applying causal inference, experimental design, or causal machine learning techniques to topics in labor, personnel, education, health, public, or behavioral science. We are particularly interested in candidates with experience applying these skills to strategic problems with significant business and/or social policy impact.Candidates will work with economists, scientists and engineers to estimate and validate their models on large scale data, and will help business partners turn the results of their analysis into policies, programs, and actions that have a major impact on Amazon’s business and its workforce. We are looking for creative thinkers who can combine a strong scientific toolbox with a desire to learn from others, and who know how to execute and deliver on big ideas.You will conduct, direct, and coordinate all phases of research projects, including defining key research questions, developing models, designing and implementing appropriate data collection methods, executing analysis plans, and communicating results. You will earn trust from our business partners by collaborating with them to define key research questions, communicate scientific approaches and findings, listen to and incorporate their feedback, and deliver successful solutions.
US, WA, Seattle
Job summaryWant to work on one of Amazon’s most ambitious efforts? Time and Attendance (TAA) is leading the charge to build products that support our global workforce of passionate Amazonians!At Amazon we take seriously our commitment to pay employees accurately and on-time. While each line of business is responsible for knowing and driving down pay defects for their own employees, the centralized Perfect Pay team manages data stores and analytics, program oversight, cross-org technical and non-technical projects, and drives accountability across leaders.TAA is looking for a strong Data Scientist, Machine Learning for the Perfect Pay program to drive and own design and development of Machine Learning products to detect anomalies and risks to prevent pay errors before they happen. You will lead the team in designing anomaly and risk detection models to identify and prevent defects for Amazonians in their HR and pay data. You will work on all aspects of the product development life cycle, with a focus on the hardest problems around building scalable machine learning models with native AWS solutions that leverage tools like SageMaker, Glue, and Redshift to grow with Amazon. You will build high quality, scalable models which create immediate and impactful value for our Amazonians worldwide, while also ensuring that our products are evolving in a sustainable long-term direction.Who are we looking for to join our team?We are looking for a Data Science, machine learning specialist to build new and innovative systems that can predict pay defects before they happen and drive operational excellence across businesses. The HR systems and tools have never been analyzed together in context. The opportunity to automate improving the Amazonian experience using ML and AI span from improving the pay experience, to building risk prevention, to automatically triggering internal HR systems to correct anomalies. Getting the opportunity to cross-functionally explore data sets which support 1.4 million Amazonians for the first time is a unique opportunity. The ideal candidate will be experienced in innovating in domains without current ML/AI products. Domain experience in time and attendance and payroll, or Amazon operations field experience is useful but not required.Key job responsibilitiesMain responsibilities• Use statistical and machine learning techniques to create scalable anomaly detection and risk management systems• Analyzing and understanding large amounts of Amazon’s historical HR data for specific instances of defects or broader risk trends• Design, development, and evaluation of highly innovative models for anomaly detection and risk assessment• Working closely with data engineering team to scope scalable data architecture solutions that support your ML models• Working closely with software engineering teams to drive real-time model implementations and new feature creations• Working closely with operations staff to optimize defect prevention and model implementations• Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation• Research and implement novel machine learning and statistical approaches• Working closely with HR Business Partners to understand their use-cases for anomaly and risk detection as well as to define the data needed to carry out the work
US, WA, Bellevue
Job summaryAmazon relies on the latest technology to deliver millions of packages every day to our customers – on time, at low cost, and safely. The Middle Mile Planning Research & Optimization Science team builds complex science models and solutions that work across our vendors, warehouses and carriers to optimize both time & cost of getting the packages delivered. Our models are state-of-the-art, make business decisions impacting billions of dollars a year, and improve ordering and delivery experience for millions of online shoppers. That said, this remains a fast growing business and our journey has only started. Our mission is to build the most efficient and transportation network on the planet, using our science and technology as our biggest advantage. We aim to leverage cutting edge technologies in machine learning and operations research to grow our businesses.As a Machine Learning Applied Scientist, you’ll design, model, develop and implement state-of-the-art machine learning models and solutions used by Amazon worldwide. You will need to collaborate effectively with internal stakeholders and cross-functional teams to solve problems, create operational efficiencies, and deliver successfully against high organizational standards. As part of your role you will regularly interact with software engineering teams and business leadership. The focus of this role is to research, develop, and deploy predictive models that will inform and support our business, primarily in the areas of carrier safety.Tasks/ Responsibilities:· Lead and partner with the engineering and operations teams to drive modeling and technical design for complex business problems.· Develop accurate and scalable machine learning models and methods to solve our hardest predictive problems in transportation.· Lead complex modeling analyses to aid management in making key business decisions and set new policies.
US, NJ, Newark
Job summaryGood storytelling starts with great listening. At Audible, that means each role and every project has our audience in mind. Because the same people who design, develop, and deploy our products also happen to use them. To us, that speaks volumes.ABOUT THIS ROLEAudible is searching for an exceptional data scientist to join our economics team and drive the development of models at the intersection of machine learning and econometrics at scale. The Audible economics organization works across the business to measure and maximize the value Audible delivers to customers, creators, and communities globally. In this role, there will be a focus on partnering with our content and product teams to build a groundbreaking catalog of audiobooks and spoken-word entertainment, develop innovative tools to generate value for creators, and optimize content distribution and monetization.We are looking for someone experienced in building ML models at scale for complex prediction and optimization problems, who also has a background (or burgeoning interest!) in causal inference or interpretable machine learning. In addition to working with our staff economists and data scientists, you will also collaborate closely with scientists across Audible and partner teams at Amazon on problems pertinent to subscription businesses and the production of original media content.As a Data Scientist, you will...· Work with leadership in our content and product organizations to identify key analytical problems and opportunities – your work is expected to be a key input to our future content strategy.· Develop and maintain scalable, innovative data science and machine learning models that deliver actionable insights and results.· Collaborate with other data scientists, economists, and analysts at Audible to build data-driven solutions to key business problems.