The photo shows an Amazon truck parked with the company logo and the word prime painted on the side
To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits.

The science behind Amazon Prime

Amazon’s scientists have developed a variety of scientific models to help customers get the most out of their membership.

In his 2020 shareholder letter, Jeff Bezos, executive chair of Amazon’s board of directors, shared that more than 200 million people around the world have a Prime membership — along with its attendant benefits.

Those include delivery benefits (like free one and two-day delivery), digital benefits (such as Prime Video and Amazon Music), and shopping benefits (including Prime Day member deals). Prime members are also able to download thousands of e-books, magazines and comics for free, get unlimited photo storage, order groceries online, and more.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

Amazon is continually expanding and evolving its selection of Prime benefits to enhance the value for members. As Bezos wrote in an earlier shareholder letter: "We want Prime to be such a good value, you'd be irresponsible not to be a member.”

To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits. Using techniques derived from machine learning, structural econometrics, and other disciplines, they also help Amazon decide how to evolve Prime benefit offerings around the world.

Surface the most relevant Prime benefits to customers

When shoppers visit the Amazon Store, they are presented with a variety of Prime callouts with relevant benefits and related product information. Callouts for non-Prime members might outline the wide variety of benefits available, while Prime members might see more options to utilize their Prime benefits. For example, a Prime member visiting the detail page for the movie Jane Eyre might see a callout saying that the title is available for free on Prime Reading.

We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting.
Houssam Nassif

“We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting,” says Houssam Nassif, a principal applied scientist within Amazon’s consumer organization.

To make predictions about the callout that will most excite customers, the system maps item attributes (like brand, color, price, title, and category) to how often items are selected by customers. The models embedded in the system use Bayesian recommenders to make decisions on the most relevant content to surface. Bayesian inferences are used to make predictions about future events by updating prior hypotheses as more information becomes available.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

However, there are limits to this approach. For example, relying exclusively on Bayesian methods to measure customer selections can bias results toward more popular items. For example, shoppers interested in Jane Eyre might also want to read new romance novels. The challenge: newer items have untrained model weights, which can cause the system to underestimate their true click probability.

“This experience would be similar to going to a music recommendation engine, and seeing only the chart toppers in your favorite categories,” Nassif explains. “To improve the diversity of recommendations, we have to overcome the classic exploitation-exploration dilemma by including relevant and popular items [exploitation] along with newer or long-tail items that scored higher than their expected value [exploration].”

To do this, the Prime ML team utilizes methods that allow the algorithm to update the “click-probability” score by using delayed feedback from customers.

Some of the recommender systems employed by the Prime team are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

“Adaptive systems allow us to focus the diversity of recommendations even further,” says Nassif.

Prime’s adaptive systems respond continually to evolving preferences across all Amazon customers. For example, classic-literature enthusiasts who read Jane Eyre will not see callouts for romance novels or romantic comedy movies unless they express some interest in other romance novels. Some of those recommender systems are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

Recommending content that customers love

Determining the most relevant Prime benefits to present to users is the first step. Prime’s scientists have also developed algorithms to determine which formats are most likely to appeal to customers.

“Every callout has multiple dimensions, which in turn presents a large number of decisions,” says Nassif. “Do customers like to see their name? Should the callout feature a single particular product? Or even a grouping of products? To make these decisions, we have to develop an accurate understanding of customer preferences.”

Related content
Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

Callouts comprise multiple components: headline, body copy, an image (or images). They can also include other elements like customer reviews. Testing multiple variables is a combinatorial problem that can often cover a large decision space. This poses limitations on the speed of experiments designed to arrive at the layout customers prefer most.

To eliminate combinatorial explosions that can result from considering every possible combination, the models score a small subset of combinations before extrapolating their learnings to the larger universe of layouts that can be presented to customers. Conditioned by prior observations, the models are able to select the layout that has the highest probability of delivering the highest customer value.

Evolving the selection of Prime benefits

In addition to informing how customers receive recommendations about Prime as it exists today, scientists also influence how Prime will evolve as a membership. This work involves scientists from multiple disciplines collaborating closely to determine the best selection of benefits: from determining how best to reduce shipping speeds for Prime (including items eligible for the fastest speeds) to recommending which new podcasts Amazon Music should release.

Charlie Manzanares is a senior manager on the team that specializes in simulating how customers benefit from expansion of Prime benefits. Manzanares’s team comprises economists, applied scientists, research scientists, and business intelligence engineers who partner closely with product managers and software and data engineers.

Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference. Building these tools often involves inventing new science.
Charlie Manzanares

“Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference,” says Manzanares. “Building these tools often involves inventing new science, by involving scientists and engineers from a variety of backgrounds. We then utilize these tools to create scientific software at engineering scale. What’s exhilarating about this space is not just solving these scientific and technical challenges, but using these tools to make Prime better for members around the world. Moreover, the company relies on this information to make high-stakes investments. This adds an interesting layer of strategic management consulting to our work.”

Manzanares points to a recent innovation from Prime scientists that made modeling dynamic customer decisions easier.

“Prime members make ‘dynamic’ choices over whether, and when, to become and remain Prime members. Dynamic customer choices often involve tradeoffs between value and flexibility,” he explains.  “For example, in the US, most customers choose between joining Prime’s annual or monthly plans, or ending their membership or not joining Prime at all. Over time, this tradeoff results in many possible permutations of choices. For example, a member might choose monthly Prime for two months, then join annual Prime. Or they might choose monthly Prime for two months, remain non-Prime for three, then join monthly Prime for five more months, etc.”

Modeling the impact of these choice permutations in a way that is useful for counterfactual simulation is theoretically and computationally challenging.

The theoretical challenge is an “identification” problem, Manzanares explains. The identification problem makes it hard for scientists to determine which Prime feature caused members to make a particular choice.

“For example, did a member who engaged with Prime shipping and Prime Video choose to renew because they valued Prime shipping highly, but Prime Video less, or Prime Video highly, and Prime shipping less?” asks Manzanares. “This problem is common to both dynamic and ‘static’ choice problems (i.e., choice problems where choice values are not influenced by past choices). The computational problem — which is pervasive in dynamic choice settings — is generated by the sheer number of possible choices, which is labeled the ‘curse of dimensionality’ in dynamic programming literature.”

To overcome these challenges, the team combined new techniques from inverse reinforcement learning with an old assumption from structural econometrics. Inverse reinforcement learning is a machine learning paradigm popularized in the late 1990s and early 2000s.

As opposed to reinforcement learning, which learns behavioral “policies” through active experimentation, inverse reinforcement learning learns “reward” or “utility” functions from actual customer behavior. It then uses estimated utility functions to make choices in new settings. Structural econometrics is an older paradigm with a rich literature and has been used for these types of exercises since the 1940s.

"Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions” was published at the 2020 International Conference for Machine Learning.

“On the one hand, inverse reinforcement learning draws upon modern machine learning techniques. These techniques allow for rich approximations in complex settings,” says Manzanares. “On the other hand, structural econometrics has already solved many complex theoretical issues related to counterfactual simulation. These solutions often predate the development of modern machine learning and computation. This dichotomy creates opportunities for intellectual arbitrage between literatures.”

The team’s approach to the challenge is described in the paper “Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions,” which was published at the 2020 International Conference for Machine Learning.

“The findings presented in the paper are applicable across multiple fields,” says Manzanares. “That’s not surprising since the paper’s insights were made possible by collaboration across multiple disciplines.”

Prime scientists use inverse-reinforcement models to develop insights. These insights show how Prime should evolve to meet customer needs. For example, how should Prime evolve to best meet the needs of Gen Z, who engage more heavily with digital benefits (video, music, gaming)? How can grocery delivery and pickup maximize customer convenience?

These questions multiply as Prime expands globally. In international marketplaces — especially emerging ones — customer needs vary widely. For example, how might Prime serve both rural and urban customers in a marketplace like India, where needs among rural and urban customers might be very different? Experimentation, Manzanares notes, becomes critical.

 “The process of discovering what customers want across the world is a lot of fun,” he says. “Combine that with building cutting-edge science in partnership with extremely talented science, engineering, and business professionals, and this makes Prime a really rewarding place to be a scientist.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problems in the Amazon scale? Are you excited about utilizing statistical analysis, machine learning, data mining and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring a Data Scientist who has a solid background in Statistical Analysis, Machine Learning and Data Mining and a proven record of effectively analyzing large complex heterogeneous datasets, and is motivated to grow professionally as a Data Scientist. Key job responsibilities - You will work on our Science team and partner closely with applied scientists, data engineers as well as product managers, UX designers, and business partners to answer complex problems via data analysis. Outputs from your analysis will directly help improve the performance of the ML based recommendation systems thereby enhancing the customer experience as well as inform the roadmap for science and the product. - You can effectively analyze complex and disparate datasets collected from diverse sources to derive key insights. - You have excellent communication skills to be able to work with cross-functional team members to understand key questions and earn the trust of senior leaders. - You are able to multi-task between different tasks such as gap analysis of algorithm results, integrating multiple disparate datasets, doing business intelligence, analyzing engagement metrics or presenting to stakeholders. - You thrive in an agile and fast-paced environment on highly visible projects and initiatives. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Amazon Advertising Impact Team is looking for a Senior Economist to help translate cutting-edge causal inference and machine learning research into production solutions. The individual will have the opportunity to shape the technical and strategic vision of a highly ambiguous problem space, and deliver measurable business impacts via cross-team and cross-functional collaboration. Amazon is investing heavily in building a world class advertising business. Our advertising products are strategically important to Amazon’s Retail and Marketplace businesses for driving long-term growth. The mission of the Advertising Impact Team is to make our advertising products the most customer-centric in the world. We specialize in measuring and modeling the short- and long-term customer behavior in relation to advertising, using state of the art econometrics and machine learning techniques. With a broad mandate to experiment and innovate, we are constantly advancing our experimentation methodology and infrastructure to accelerate learning and scale impacts. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. Key job responsibilities • Function as a technical leader to shape the strategic vision and the science roadmap of a highly ambiguous problem space • Develop economic theory and deliver econometrics and machine learning models to optimize advertising strategies on behalf of our customers • Design, execute, and analyze experiments to verify the efficacy of different scientific solutions in production • Partner with cross-team technical contributors (scientists, software engineers, product managers) to implement the solution in production • Write effective business narratives and scientific papers to communicate to both business and technical audience, including the most senior leaders of the company We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. The team build advanced deep-learning models, large-scale machine-learning (ML) pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. We are looking for an Applied Scientist, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would ensure relevant and useful ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize cutting-edge machine learning techniques in the domain of predictive modeling, natural language processing (NLP) and Transformer, deep learning, reinforcement learning, query understanding, and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Key job responsibilities As a Senior Applied Scientist on this team, you will: • Be the technical leader in Machine Learning; lead efforts within this team and across other teams. • Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. • Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. • Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. • Run A/B experiments, gather data, and perform statistical analysis. • Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. • Research new and innovative machine learning approaches. • Conduct experiment with LLM training and finetuning, prompt engineering • Recruit Applied Scientists to the team and provide mentorship. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
Interested in using the latest, cutting edge machine learning and science to improve the Amazon employee experience? This role provides applied science leadership to the organization that develops and delivers data-driven insights, personalization, and nudges into Amazon's suite of talent management products to help managers, employees, and organizational leaders make better decisions and have better, more equitable outcomes. Key job responsibilities As the Principal Applied Scientist for GTMC SIERRA, you will be responsible for providing scientific thought leadership over multiple applied science and engineering teams. Each of these teams has rapidly evolving and complex demands to define, develop, and deliver scalable products that make work easier, more efficient, and more rewarding for Amazonians. These are some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves. You will also play a critical role in the organization's business planning, work closely with senior executives to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop engineering and science talent. You will provide science thought leadership and support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing market. About the team Global Talent Management & Compensation (GTMC) SIERRA (Science, Insights, Experience, Research, Reporting & Analytics) is a horizontal, multi-disciplinary organization whose mission is to be a force multiplier for the broader GTMC organization and our key customer cohorts. We accomplish this by using our expertise in data analytics and science, economics, machine learning (ML), UX, I/O psychology, and engineering to build insights and experiences that raise the bar in understanding and shaping decision making at scale by integrating within and across talent journeys as well as through self-service tools and closed loop mechanisms outside of those journeys. Our portfolio of products spans foundational data sources, metrics, and research through to finished features and products that our end-customers interact with on a daily basis. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA