The photo shows an Amazon truck parked with the company logo and the word prime painted on the side
To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits.

The science behind Amazon Prime

Amazon’s scientists have developed a variety of scientific models to help customers get the most out of their membership.

In his 2020 shareholder letter, Jeff Bezos, executive chair of Amazon’s board of directors, shared that more than 200 million people around the world have a Prime membership — along with its attendant benefits.

Those include delivery benefits (like free one and two-day delivery), digital benefits (such as Prime Video and Amazon Music), and shopping benefits (including Prime Day member deals). Prime members are also able to download thousands of e-books, magazines and comics for free, get unlimited photo storage, order groceries online, and more.

Related content
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

Amazon is continually expanding and evolving its selection of Prime benefits to enhance the value for members. As Bezos wrote in an earlier shareholder letter: "We want Prime to be such a good value, you'd be irresponsible not to be a member.”

To help deliver more value to Prime members, scientists within Amazon’s Prime organization develop methods to help consumers discover and utilize Prime benefits. Using techniques derived from machine learning, structural econometrics, and other disciplines, they also help Amazon decide how to evolve Prime benefit offerings around the world.

Surface the most relevant Prime benefits to customers

When shoppers visit the Amazon Store, they are presented with a variety of Prime callouts with relevant benefits and related product information. Callouts for non-Prime members might outline the wide variety of benefits available, while Prime members might see more options to utilize their Prime benefits. For example, a Prime member visiting the detail page for the movie Jane Eyre might see a callout saying that the title is available for free on Prime Reading.

We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting.
Houssam Nassif

“We utilize recommender systems to engage shoppers with information about Prime benefits that they would find most interesting,” says Houssam Nassif, a principal applied scientist within Amazon’s consumer organization.

To make predictions about the callout that will most excite customers, the system maps item attributes (like brand, color, price, title, and category) to how often items are selected by customers. The models embedded in the system use Bayesian recommenders to make decisions on the most relevant content to surface. Bayesian inferences are used to make predictions about future events by updating prior hypotheses as more information becomes available.

Related content
Dual embeddings of each node, as both source and target, and a novel loss function enable 30% to 160% improvements over predecessors.

However, there are limits to this approach. For example, relying exclusively on Bayesian methods to measure customer selections can bias results toward more popular items. For example, shoppers interested in Jane Eyre might also want to read new romance novels. The challenge: newer items have untrained model weights, which can cause the system to underestimate their true click probability.

“This experience would be similar to going to a music recommendation engine, and seeing only the chart toppers in your favorite categories,” Nassif explains. “To improve the diversity of recommendations, we have to overcome the classic exploitation-exploration dilemma by including relevant and popular items [exploitation] along with newer or long-tail items that scored higher than their expected value [exploration].”

To do this, the Prime ML team utilizes methods that allow the algorithm to update the “click-probability” score by using delayed feedback from customers.

Some of the recommender systems employed by the Prime team are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

“Adaptive systems allow us to focus the diversity of recommendations even further,” says Nassif.

Prime’s adaptive systems respond continually to evolving preferences across all Amazon customers. For example, classic-literature enthusiasts who read Jane Eyre will not see callouts for romance novels or romantic comedy movies unless they express some interest in other romance novels. Some of those recommender systems are captured in the paper "Bayesian meta-prior learning using Empirical Bayes".

Recommending content that customers love

Determining the most relevant Prime benefits to present to users is the first step. Prime’s scientists have also developed algorithms to determine which formats are most likely to appeal to customers.

“Every callout has multiple dimensions, which in turn presents a large number of decisions,” says Nassif. “Do customers like to see their name? Should the callout feature a single particular product? Or even a grouping of products? To make these decisions, we have to develop an accurate understanding of customer preferences.”

Related content
Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

Callouts comprise multiple components: headline, body copy, an image (or images). They can also include other elements like customer reviews. Testing multiple variables is a combinatorial problem that can often cover a large decision space. This poses limitations on the speed of experiments designed to arrive at the layout customers prefer most.

To eliminate combinatorial explosions that can result from considering every possible combination, the models score a small subset of combinations before extrapolating their learnings to the larger universe of layouts that can be presented to customers. Conditioned by prior observations, the models are able to select the layout that has the highest probability of delivering the highest customer value.

Evolving the selection of Prime benefits

In addition to informing how customers receive recommendations about Prime as it exists today, scientists also influence how Prime will evolve as a membership. This work involves scientists from multiple disciplines collaborating closely to determine the best selection of benefits: from determining how best to reduce shipping speeds for Prime (including items eligible for the fastest speeds) to recommending which new podcasts Amazon Music should release.

Charlie Manzanares is a senior manager on the team that specializes in simulating how customers benefit from expansion of Prime benefits. Manzanares’s team comprises economists, applied scientists, research scientists, and business intelligence engineers who partner closely with product managers and software and data engineers.

Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference. Building these tools often involves inventing new science.
Charlie Manzanares

“Our team works at the scientific intersection of structural econometrics, machine learning, and causal inference,” says Manzanares. “Building these tools often involves inventing new science, by involving scientists and engineers from a variety of backgrounds. We then utilize these tools to create scientific software at engineering scale. What’s exhilarating about this space is not just solving these scientific and technical challenges, but using these tools to make Prime better for members around the world. Moreover, the company relies on this information to make high-stakes investments. This adds an interesting layer of strategic management consulting to our work.”

Manzanares points to a recent innovation from Prime scientists that made modeling dynamic customer decisions easier.

“Prime members make ‘dynamic’ choices over whether, and when, to become and remain Prime members. Dynamic customer choices often involve tradeoffs between value and flexibility,” he explains.  “For example, in the US, most customers choose between joining Prime’s annual or monthly plans, or ending their membership or not joining Prime at all. Over time, this tradeoff results in many possible permutations of choices. For example, a member might choose monthly Prime for two months, then join annual Prime. Or they might choose monthly Prime for two months, remain non-Prime for three, then join monthly Prime for five more months, etc.”

Modeling the impact of these choice permutations in a way that is useful for counterfactual simulation is theoretically and computationally challenging.

The theoretical challenge is an “identification” problem, Manzanares explains. The identification problem makes it hard for scientists to determine which Prime feature caused members to make a particular choice.

“For example, did a member who engaged with Prime shipping and Prime Video choose to renew because they valued Prime shipping highly, but Prime Video less, or Prime Video highly, and Prime shipping less?” asks Manzanares. “This problem is common to both dynamic and ‘static’ choice problems (i.e., choice problems where choice values are not influenced by past choices). The computational problem — which is pervasive in dynamic choice settings — is generated by the sheer number of possible choices, which is labeled the ‘curse of dimensionality’ in dynamic programming literature.”

To overcome these challenges, the team combined new techniques from inverse reinforcement learning with an old assumption from structural econometrics. Inverse reinforcement learning is a machine learning paradigm popularized in the late 1990s and early 2000s.

As opposed to reinforcement learning, which learns behavioral “policies” through active experimentation, inverse reinforcement learning learns “reward” or “utility” functions from actual customer behavior. It then uses estimated utility functions to make choices in new settings. Structural econometrics is an older paradigm with a rich literature and has been used for these types of exercises since the 1940s.

"Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions” was published at the 2020 International Conference for Machine Learning.

“On the one hand, inverse reinforcement learning draws upon modern machine learning techniques. These techniques allow for rich approximations in complex settings,” says Manzanares. “On the other hand, structural econometrics has already solved many complex theoretical issues related to counterfactual simulation. These solutions often predate the development of modern machine learning and computation. This dichotomy creates opportunities for intellectual arbitrage between literatures.”

The team’s approach to the challenge is described in the paper “Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions,” which was published at the 2020 International Conference for Machine Learning.

“The findings presented in the paper are applicable across multiple fields,” says Manzanares. “That’s not surprising since the paper’s insights were made possible by collaboration across multiple disciplines.”

Prime scientists use inverse-reinforcement models to develop insights. These insights show how Prime should evolve to meet customer needs. For example, how should Prime evolve to best meet the needs of Gen Z, who engage more heavily with digital benefits (video, music, gaming)? How can grocery delivery and pickup maximize customer convenience?

These questions multiply as Prime expands globally. In international marketplaces — especially emerging ones — customer needs vary widely. For example, how might Prime serve both rural and urban customers in a marketplace like India, where needs among rural and urban customers might be very different? Experimentation, Manzanares notes, becomes critical.

 “The process of discovering what customers want across the world is a lot of fun,” he says. “Combine that with building cutting-edge science in partnership with extremely talented science, engineering, and business professionals, and this makes Prime a really rewarding place to be a scientist.”

Research areas

Related content

CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 8am-5pm. Specific team norms around working hours will be communicated by your manager. Interns should not have conflicts such as classes or other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role. About the team The Personal Robotics Group is pioneering intelligent robotic products that deliver meaningful customer experiences. We're the team behind Amazon Astro, and we're building the next generation of robotic systems that will redefine how customers interact with technology. Our work spans the full spectrum from advanced hardware design to sophisticated software and control systems, combining mechanical innovation, software engineering, dynamic systems modeling, and intelligent algorithms to create robots that are not just functional, but delightful. This is a unique opportunity to shape the future of personal robotics working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Join us if you're passionate about creating the future of personal robotics, solving complex challenges at the intersection of hardware and software, and seeing your innovations deliver transformative customer experiences.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Science Manager with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to lead a team ensuring the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Science Manager will lead and mentor a team of Applied Scientists who develop comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. The manager will guide the team in designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that align with core scientist team developing Amazon Nova models. The Applied Science Manager will oversee expert-level manual audits, meta-audits to evaluate auditor performance, and provide coaching to uplift overall quality capabilities across the team. A critical aspect of this role involves managing the development and maintenance of LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Science Manager will also oversee the configuration of data collection workflows and ensure effective communication of quality feedback to stakeholders. The manager will have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. The Applied Science Manager will be responsible for recruiting, hiring, and developing team members, conducting performance reviews, setting clear expectations and growth plans, and fostering a culture of scientific excellence and innovation. The manager will communicate with senior leadership, cross-functional technical teams, and customers to collect requirements, describe product features and technical designs, and articulate product strategy. A day in the life An Applied Science Manager with the AGI team will lead quality solution design, guide root cause analysis on data quality issues, drive research into new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. The manager will work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice. The manager will also conduct regular 1:1s with team members, provide mentorship and coaching, and ensure the team delivers high-impact results aligned with organizational goals.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.