On the left is the cover of the book Ethical Machines, on the right is its author Reid Blackman
Reid Blackman’s new book — Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI — is a guide for avoiding bias in artificial intelligence and machine learning.

Reid Blackman: The ethics of AI

The author of Ethical Machines explains why companies pursuing ethical AI must ultimately place the responsibility with their senior leadership.

When Diya Wynn, a senior practice manager in Amazon’s Emerging Technologies and Intelligent Platforms group, created Amazon Web Services’ (AWS) responsible AI team in late 2020, she began looking for thought leaders with whom she could collaborate.

AI and machine learning technologies were game changers and had demonstrable upside, but there were potential downsides as well. A raft of potential issues for AWS’s customers — from legal concerns to ethical dilemmas — accompanied the deployment of these potent technologies.

Senior business leaders were slowly realizing that their organizations didn’t have the people or institutional knowledge and practices to address those risks. AWS customers were looking for guidance on how to use AI-based tools responsibly.

As Amazon made a strong commitment to responsible AI, Wynn found her first partner. Reid Blackman was a former philosophy professor turned entrepreneur who had leaped into the fray in 2018 by starting Virtue, a consulting firm aimed at helping companies institute responsible AI and ML practices within their organizations.

Blackman’s new book — Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI (Harvard Business Review Press) is a how-to guide for navigating some daunting and potentially perilous waters.

Potent tech, unintended consequences

For Blackman, AI ethics in business is actually about intelligent systems designed to handle specific, narrow tasks far more efficiently than humans could. Machine learning, fueled by a seemingly bottomless trove of data, has enabled automated decision-making that produces faster, more accurate outcomes than ever before possible.

Related content
Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

Unfortunately, such systems have also proven to be capable of flawed or unintended results that can do significant harm to a company’s reputation and bottom line. The more AI-based products and services have become integral to the global economy, the clearer it has become that oversight is essential.

Having been introduced by a mutual colleague participating in an AI working group Wynn and Blackman quickly realized they had similar goals, and a partnership emerged. While many executives consider “responsible AI” a bit esoteric, Blackman has embraced the opposite perspective.

“To him, AI ethics are not fuzzy,” Wynn said. “He has a way of getting around that conversation and helping people land on some concrete ideas about what is good and right.”

Together, they are delivering workshops for Amazon customers and providing the book as a primer on how to think about and implement effective internal processes and programs.

Responding to ‘alarm bells’

Blackman’s philosophy background proved to be a useful foundation for considering the implications of AI. Ethically responsible behavior, after all, is at the heart of most conversations about human nature. But after a decade of teaching, he had grown weary of the academic environment.

Blackman had an entrepreneurial bent: In grad school, he had started a successful fireworks wholesaling business. He noticed that the adoption of AI in business, though still in its infancy, had exploded. The decision to leave academia, where he taught philosophy at Colgate University and the University of North Carolina, was based on that entrepreneurial itch and a realization that a new market was materializing.

“It was 2018, and I became aware of engineers ringing alarm bells around the coming impact of AI on society,” Blackman said, citing the fallout from the Cambridge Analytica scandal.

Reid Blackman: Why we need a broader ethical AI perspective in business

By 2020 and 2021, the conversation around AI ethics and responsibility had reached a fever pitch. Blackman wrote articles about the subject for the likes of the Harvard Business Review and TechCrunch. He came at the problem with an unusual take. He distinguishes between two groups: AI for good, and AI for not bad.

“Those in the 'AI for good' group ask themselves the question: 'How can we create a positive social impact with the powerful tool that is AI?'" Blackman explained. “That is usually the province of corporate social responsibility. There’s rarely a business model behind their goals.

“AI for not bad is about risk mitigation. These people have a goal, which may or may not be ethical in character, like making loans to people, interviewing people for jobs, diagnosing people with various diseases and recommending treatments, and they ask themselves: `How can we use AI to help us with those things in a way that doesn’t ethically screw things up?’”

That question is of paramount concern to business leaders. Because as these products and services tread close to ethical boundaries, their implementation has serious implications to business reputations.

The path to AI for good and ‘not bad’

Companies have long struggled to find ways to create and maintain an ethically sound organization, Blackman said, and AI adds a new layer of complexity. Making sure the tools they use are accurate, reliable, and based on sound science is a challenging task.

Added to the problem, he pointed out, is that senior leaders, specifically CEOs and COOs, believe this is a technical problem to be solved by engineers and data scientists. That, Blackman insisted, is wrong.

You will only get the systematic design, development, procurement and deployment of ethically responsible tools on the condition that you have a top-down strategy for doing it right.
Reid Blackman

“Ultimately, this resides with senior leadership,” Blackman said. “Junior engineers and data scientists want to do the right thing, but the truth is that you will only get the systematic design, development, procurement and deployment of ethically responsible tools on the condition that you have a top-down strategy for doing it right. What’s more you can’t math your way out of these problems. Data scientists need support from relevant experts who can help make the qualitative judgments that are a necessary feature of any robust ethical risk assessment."

Blackman insists that ethics is not “squishy” or difficult to understand and mitigate if leaders are willing to learn enough about how AI and ML intersect with ethics.

The reason most organizations are slow in responding to this new challenge, he said, is that they may either not know they have a problem, or “They might know they have a problem, but nobody owns the problem. If nobody owns the problem, there will be no budget allotted to solve it. Corporate codes of conduct are usually too general and vague to effectively address the issue.

“Senior leaders are intellectually intimidated by the topic,” Blackman said. “They say, `This is something for the data scientists to figure out. Not me.’”

In his book, Blackman lays out what he considers the crucial distinction that organizations must understand in order to understand AI ethics: structure versus content. The content side of the equation is focused on the ethical issues to avoid. The structural structure side is aimed at how to mitigate those risks.

Related content
Krishna Gade, the founder of this Alexa Fund portfolio company, answers three questions about ‘responsible AI’.

Blackman believes most leaders get a superficial view of the content side: Bias is bad, fairness is good, black box algorithms are scary. What, they then ask, should our structure look like? “They answer that too quickly,” Blackman said, “and they run into problems. If you go deeper on the content side, then the structure side will reveal itself.”

Going deeper, he suggested, means exploring what bias looks like, understanding the concept of discriminatory impacts, and developing a strong AI ethics statement. With a comprehensive understanding of the content side, businesses can create the appropriate procedures, processes, policies, and infrastructure to identify and mitigate risks.

Developing a partner ecosystem

For Wynn, building a “partner ecosystem” is a key method for scaling AWS’s work. Customers have been starting to ask more and more questions about AI and ML issues.

“Our consistent way to respond comes through our responsible AI framework to instantiate principles in an organization, the strategic guidance we offer in engagement, leveraging services and tools that compliment responsible AI principles,” Wynn explains.

“We’ve opened Pandora’s Box, and there is no closing it,” Wynn said. “What do we do in wielding this tremendous power we have with AI and ensure it isn’t harmful?”

Working with AWS is a potent partnership, Blackman added. “There is great value bringing our collective experience in qualitative assessment, ethical technology, and software engineering together to service customers,” Wynn agreed.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA
ES, M, Madrid
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Madrid, ESP | Madrid, M, ESP
US, TX, Austin
The role is available Arlington, Virginia (may consider New York, NY, Los Angeles, CA, or Toronto, Canada). Calling all inventors to work on exciting new opportunities in Sponsored Products. Amazon is building a world class advertising business and defining and delivering a collection of self-service performance advertising products that drive discovery and sales of merchandise. Our products are strategically important to our Retail and Marketplace businesses, driving long-term growth. Sponsored Products (SP) helps merchants, retail vendors, and brand owners grows incremental sales of their products sold on Amazon through native advertising. SP achieves this by using a combination of machine learning, big data analytics, ultra-low latency high-volume engineering systems, and quantitative product focus. We are a highly motivated, collaborative and fun-loving group with an entrepreneurial spirit and bias for action. You will join a newly-founded team with a broad mandate to experiment and innovate, which gives us the flexibility to explore and apply scientific techniques to novel product problems. You will have the satisfaction of seeing your work improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact. More importantly, you will have the opportunity to broaden your technical skills, work with Generative AI, and be a science leader in an environment that thrives on creativity, experimentation, and product innovation. We are open to hiring candidates to work out of one of the following locations: Austin, TX, USA
US, CA, San Diego
The Private Brands team is looking for an Applied Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights. We are an interdisciplinary team of Scientists, Engineers, and Economists and primary focus on building optimization and machine learning solutions in supply chain domain with specific focus on Amazon private brand products. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in predictive and machine learning models and working with distributed systems. Academic and/or practical background in Machine Learning are particularly relevant for this position. Familiarity and experience in applying Operations Research techniques to supply chain problems is a plus. To know more about Amazon science, Please visit https://www.amazon.science We are open to hiring candidates to work out of one of the following locations: San Diego, CA, USA | Seattle, WA, USA
LU, Luxembourg
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
GB, London
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis Basic Qualifications -Masters in Computer Science, Machine Learning, Robotics or equivalent with a focus on Computer Vision. -2+ years of experience of building machine learning models for business application -Broad knowledge of fundamentals and state of the art in computer vision and machine learning -Strong coding skills in two or more programming languages such as Python or C/C++ -Knowledge of fundamentals in optimization, supervised and reinforcement learning -Excellent problem-solving ability Preferred Qualifications -PhD and 4+ years of industry or academic applied research experience applying Computer Vision techniques and developing Computer vision algorithms -Depth and breadth in state-of-the-art computer vision and machine learning technologies and experience designing and building computer vision solutions -Industry experience in sensor systems and the development of production computer vision and machine learning applications built to use them -Experience developing software interfacing to AWS services -Excellent written and verbal communication skills with the ability to present complex technical information in a clear and concise manner to a variety of audiences -Ability to work on a diverse team or with a diverse range of coworkers -Experience in publishing at major Computer Vision, ML or Robotics conferences or Journals (CVPR, ICCV, ECCV, NeurIPS, ICML, IJCV, ICRA, IROS, RSS,...) We are open to hiring candidates to work out of one of the following locations: London, GBR