On the left is the cover of the book Ethical Machines, on the right is its author Reid Blackman
Reid Blackman’s new book — Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI — is a guide for avoiding bias in artificial intelligence and machine learning.

Reid Blackman: The ethics of AI

The author of Ethical Machines explains why companies pursuing ethical AI must ultimately place the responsibility with their senior leadership.

When Diya Wynn, a senior practice manager in Amazon’s Emerging Technologies and Intelligent Platforms group, created Amazon Web Services’ (AWS) responsible AI team in late 2020, she began looking for thought leaders with whom she could collaborate.

AI and machine learning technologies were game changers and had demonstrable upside, but there were potential downsides as well. A raft of potential issues for AWS’s customers — from legal concerns to ethical dilemmas — accompanied the deployment of these potent technologies.

Senior business leaders were slowly realizing that their organizations didn’t have the people or institutional knowledge and practices to address those risks. AWS customers were looking for guidance on how to use AI-based tools responsibly.

As Amazon made a strong commitment to responsible AI, Wynn found her first partner. Reid Blackman was a former philosophy professor turned entrepreneur who had leaped into the fray in 2018 by starting Virtue, a consulting firm aimed at helping companies institute responsible AI and ML practices within their organizations.

Blackman’s new book — Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI (Harvard Business Review Press) is a how-to guide for navigating some daunting and potentially perilous waters.

Potent tech, unintended consequences

For Blackman, AI ethics in business is actually about intelligent systems designed to handle specific, narrow tasks far more efficiently than humans could. Machine learning, fueled by a seemingly bottomless trove of data, has enabled automated decision-making that produces faster, more accurate outcomes than ever before possible.

Related content
Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

Unfortunately, such systems have also proven to be capable of flawed or unintended results that can do significant harm to a company’s reputation and bottom line. The more AI-based products and services have become integral to the global economy, the clearer it has become that oversight is essential.

Having been introduced by a mutual colleague participating in an AI working group Wynn and Blackman quickly realized they had similar goals, and a partnership emerged. While many executives consider “responsible AI” a bit esoteric, Blackman has embraced the opposite perspective.

“To him, AI ethics are not fuzzy,” Wynn said. “He has a way of getting around that conversation and helping people land on some concrete ideas about what is good and right.”

Together, they are delivering workshops for Amazon customers and providing the book as a primer on how to think about and implement effective internal processes and programs.

Responding to ‘alarm bells’

Blackman’s philosophy background proved to be a useful foundation for considering the implications of AI. Ethically responsible behavior, after all, is at the heart of most conversations about human nature. But after a decade of teaching, he had grown weary of the academic environment.

Blackman had an entrepreneurial bent: In grad school, he had started a successful fireworks wholesaling business. He noticed that the adoption of AI in business, though still in its infancy, had exploded. The decision to leave academia, where he taught philosophy at Colgate University and the University of North Carolina, was based on that entrepreneurial itch and a realization that a new market was materializing.

“It was 2018, and I became aware of engineers ringing alarm bells around the coming impact of AI on society,” Blackman said, citing the fallout from the Cambridge Analytica scandal.

Reid Blackman: Why we need a broader ethical AI perspective in business

By 2020 and 2021, the conversation around AI ethics and responsibility had reached a fever pitch. Blackman wrote articles about the subject for the likes of the Harvard Business Review and TechCrunch. He came at the problem with an unusual take. He distinguishes between two groups: AI for good, and AI for not bad.

“Those in the 'AI for good' group ask themselves the question: 'How can we create a positive social impact with the powerful tool that is AI?'" Blackman explained. “That is usually the province of corporate social responsibility. There’s rarely a business model behind their goals.

“AI for not bad is about risk mitigation. These people have a goal, which may or may not be ethical in character, like making loans to people, interviewing people for jobs, diagnosing people with various diseases and recommending treatments, and they ask themselves: `How can we use AI to help us with those things in a way that doesn’t ethically screw things up?’”

That question is of paramount concern to business leaders. Because as these products and services tread close to ethical boundaries, their implementation has serious implications to business reputations.

The path to AI for good and ‘not bad’

Companies have long struggled to find ways to create and maintain an ethically sound organization, Blackman said, and AI adds a new layer of complexity. Making sure the tools they use are accurate, reliable, and based on sound science is a challenging task.

Added to the problem, he pointed out, is that senior leaders, specifically CEOs and COOs, believe this is a technical problem to be solved by engineers and data scientists. That, Blackman insisted, is wrong.

You will only get the systematic design, development, procurement and deployment of ethically responsible tools on the condition that you have a top-down strategy for doing it right.
Reid Blackman

“Ultimately, this resides with senior leadership,” Blackman said. “Junior engineers and data scientists want to do the right thing, but the truth is that you will only get the systematic design, development, procurement and deployment of ethically responsible tools on the condition that you have a top-down strategy for doing it right. What’s more you can’t math your way out of these problems. Data scientists need support from relevant experts who can help make the qualitative judgments that are a necessary feature of any robust ethical risk assessment."

Blackman insists that ethics is not “squishy” or difficult to understand and mitigate if leaders are willing to learn enough about how AI and ML intersect with ethics.

The reason most organizations are slow in responding to this new challenge, he said, is that they may either not know they have a problem, or “They might know they have a problem, but nobody owns the problem. If nobody owns the problem, there will be no budget allotted to solve it. Corporate codes of conduct are usually too general and vague to effectively address the issue.

“Senior leaders are intellectually intimidated by the topic,” Blackman said. “They say, `This is something for the data scientists to figure out. Not me.’”

In his book, Blackman lays out what he considers the crucial distinction that organizations must understand in order to understand AI ethics: structure versus content. The content side of the equation is focused on the ethical issues to avoid. The structural structure side is aimed at how to mitigate those risks.

Related content
Krishna Gade, the founder of this Alexa Fund portfolio company, answers three questions about ‘responsible AI’.

Blackman believes most leaders get a superficial view of the content side: Bias is bad, fairness is good, black box algorithms are scary. What, they then ask, should our structure look like? “They answer that too quickly,” Blackman said, “and they run into problems. If you go deeper on the content side, then the structure side will reveal itself.”

Going deeper, he suggested, means exploring what bias looks like, understanding the concept of discriminatory impacts, and developing a strong AI ethics statement. With a comprehensive understanding of the content side, businesses can create the appropriate procedures, processes, policies, and infrastructure to identify and mitigate risks.

Developing a partner ecosystem

For Wynn, building a “partner ecosystem” is a key method for scaling AWS’s work. Customers have been starting to ask more and more questions about AI and ML issues.

“Our consistent way to respond comes through our responsible AI framework to instantiate principles in an organization, the strategic guidance we offer in engagement, leveraging services and tools that compliment responsible AI principles,” Wynn explains.

“We’ve opened Pandora’s Box, and there is no closing it,” Wynn said. “What do we do in wielding this tremendous power we have with AI and ensure it isn’t harmful?”

Working with AWS is a potent partnership, Blackman added. “There is great value bringing our collective experience in qualitative assessment, ethical technology, and software engineering together to service customers,” Wynn agreed.

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.
JP, Tokyo
The Amazon Logistics (AMZL) Team is responsible for the acquisition, design, construction, and management of all facilities in the Amazon Delivery Station Network. AMZL is looking for a talented and passionate Data Scientist to help shape its Last Mile business with technical strategies and solutions, by processing, analyzing and interpreting huge data sets. You should be comfortable with ambiguity, problem solving and enjoy working in a fast-paced, diverse and dynamic environment. Using analytical rigor and statistical methods, you mine through data to identify opportunities for Amazon and our delivery channels. And you collaborate with other scientists, engineers, Product and Program Managers to deploy new products and solutions. [More Information] Last Mile Department Data Analyst/BI Engineer Tokyo Office *Amazon is committed to a diverse and inclusive workplace. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status. For individuals with disabilities who would like to request an accommodation, visit https://www.amazon.jobs/disability/jp Key job responsibilities Creating a roadmap of the most challenging business questions and use data to articulate possible root cause analysis and solutions Managing and executing entire projects or components of large projects from start to finish including project management, data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights Partnering with Product, Program and Engineering teams to design and run models, research new algorithms, and prove incrementality and drive growth Understanding drivers, impacts, and key influences on seller growth dynamics Developing and scaling end-to-end ML Models and solutions Automating feedback loops for algorithms in production Utilizing Amazon systems and tools to effectively work with terabytes of data About the team Last Mile Execution Analytics (LMEA) team of JP works as an integral part of Amazon Logistics to ensure that its business intelligence, analytics, tools and planning needs are met. By providing information, insight, and decision support, we strive to enable success of all parts of AMZL. Our customer set includes senior management, station operations, external vendors, long-term planning, Ops technology (Voice of the Delivery Station, Voice of the Customer), network planning, and pretty much every BI and Ops teams. Voice of Employee [Work Life Harmony] We believe, it is important to spend private time such as spending time with your family or doing anything you like to spur innovation. Amazon promotes a fulfilling and flexible work style according to the work volume and lifestyle of each employee.
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables