How some of AWS's most innovative customers are using computer vision technologies

From counting fish to identifying touchdowns, AWS customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences.

Computer vision, the automatic recognition and description of images and video, has applications that are far-reaching, from identifying defects in high speed assembly lines and its use in autonomous robots, to the analysis of medical images, and the identification of products and people in social media. This week, in line with the IEEE Computer Vision and Pattern Recognition (CVPR) conference, we’ve rounded up examples of how some of AWS's most innovative customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences. This includes approaches such as data scientists building custom vision models using Amazon SageMaker, and application developers using Amazon Rekognition and Amazon Textract to embed computer vision into their applications.

Advertising

REA Group image
REA Group has developed an image compliance system that automatically detects any noncompliance and notifies home sellers.
fstop123/Getty Images

In advertising and other online media, computer vision can automate content moderation. REA Group, a multinational digital advertising company specializing in property and real estate, provides search-based portals that enable property sellers to upload images of properties on the market to deliver a wide, searchable selection to their consumers. REA Group discovered that images uploaded to their portal often weren’t compliant with their usage terms. Some images included trademarks or contact details of the sellers, which created lead attribution challenges. They set up a dedicated team of individuals to manually review the images for unapproved content, but the large volume of daily uploads and the additional review process delayed the property listing time by several days. The REA team developed an image compliance system that automatically detects any noncompliance and notifies sellers. To augment their existing machine learning models, they're using Amazon Rekognition Text in Image, which detects and extracts text in images, enabling them to increase the accuracy of detecting noncompliance and reduce false positives by more than 56 percent. They added business rules that factored in a variety of predictions from their own models, and from Amazon Rekognition, to enable automated decision-making.

Agriculture

fin.png
Aquabyte's machine learning algorithms can estimate how much a fish weighs while still in the water.

Agriculture has also benefited from computer vision. Fish farming is one of the most efficient sources of protein, since a pound of feed equates to nearly a pound of protein. But the cold, dark waters of fish habitats make it nearly impossible to effectively manage these farms from the surface. Historically, fish farmers have had to randomly scoop fish out of the water to measure their weight and check for disease. Aquabyte’s machine learning solution reimagines this process by using underwater cameras that keep tabs on the fish and compare photos of them over time. The machine learning algorithms, running on Amazon SageMaker, can estimate how much each fish weighs while it’s still in the water. The system can also monitor the fish for sea lice, a parasite that is a major problem in salmon farms, and the subject of significant regulation in Norway, where the bulk of Aquabyte’s client base currently operates. Without a solution like Aquabyte, managing sea lice amounts to nearly a quarter of the cost of operating a salmon farm. Aquabyte’s cameras have counted 2 million sea lice to date, the result of billions of images being captured. The Aquabyte team has been working on methods that would allow farmers to track individual fish for growth-tracking and breeding purposes. In the future, machine learning might even help automate elements of the farms by intelligently distributing fish feed, for example.

Autonomous driving

grid.png
DeepMap is focused on solving the mapping and localization challenge for autonomous vehicles.

Industries like autonomous driving wouldn’t even be possible without the help of computer vision. Perhaps you think the world is already sufficiently mapped. With the advent of satellite images and Google Street View, it seems like every square inch of the globe is represented in data. But for autonomous vehicles, much of the world is uncharted territory. That’s because the maps designed for humans “can’t be consumed by robots,” says Tom Wang, the director of engineering at DeepMap, a Palo Alto startup focused on solving the mapping and localization challenge for autonomous vehicles. According to Wang, these new kinds of vehicles need higher precision maps with richer semantics, things like the traffic signals, a lot of different traffic signs, driving boundaries, and connecting lanes. For DeepMap computer vision is critical. DeepMap needs to run a vast volume of image detections to automatically generate a comprehensive list of map features and detect dynamic road changes. Using Amazon SageMaker, DeepMap updates training models within a day and runs image detection on tens of millions of images on a daily basis to keep up with ever-changing conditions.

Education

Certipass, a UNI ISO standards accredited body for the certification of digital skills
Certipass was able to build their solution in under 30 days, enabling all their testing centers to test candidates online during the COVID-19 pandemic.
fizkes/Getty Images/iStockphoto

In the wake of the COVID-19 pandemic, many educational institutions needed to quickly pivot to the online proctoring of exams, leading to a need for new ways to verify identification. Certipass, a UNI ISO standards accredited body for the certification of digital skills, is the primary provider of the international digital competency certification –European Informatics Passport (EIPASS).

Since the EIPASS Certification is an international standard, Certipass has made it their mission to ensure maximum security, objectiveness, transparency, and fairness during the entire online evaluation process. Certipass used Amazon Rekognition for automated candidate identity verification during tests that are in line with e-Competence Framework for Information and Communication Technology (CEN) and The Digital Competence Framework for Citizens (Joint Research Centre). They were able to build the solution in under 30 days to enable all their testing centers to test candidates online during COVID-19.

Financial services

Aella Credit
Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data
Victor Karanja/Getty Images

In financial services, Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data. For those in emerging markets, identity verification and validation is one of the major challenges to accessing retail banking services. How can you know that people are who they say they are in communities that don't have proper identification systems? Aella Credit uses Amazon Rekognition to analyze images to verify a customer’s identity and give them access to financial and healthcare services with minimal friction. Amazon Rekognition helps to automate video and image analysis, with no machine learning expertise required. What would have taken days to verify someone’s identity manually, now happens in seconds. Customers can actually receive their loan in their account in less than five minutes, broadening access to credit.

Financial technology

To make sure users are getting the largest possible tax refund, Intuit incorporates machine learning throughout the TurboTax experience to help users file their taxes more efficiently. TurboTax uses machine learning to shorten the filing process, which takes an average of 13 hours.

Taxes image for AWS customer success story
TurboTax utilizes machine learning to shorten the filing process.
simpson33/Getty Images/iStockphoto

With Intuit’s computer vision capabilities supported by Amazon Textract, entering information from tax forms like W2s or 1099s takes seconds. Rather than a user having to enter form fields manually, the service scans pictures of the forms and digitizes them. Then, using contextual data from TurboTax’s existing database of tax codes and compliance forms, Amazon Textract verifies accuracy and identifies any anomalies or missing data for the user.

Healthcare

face.png
By combining the power of machine learning and computer vision, an interdisciplinary team of researchers at Duke University has created a faster, less expensive, more reliable, and more accessible system to screen children for autism spectrum disorder.

Machine learning plays a key role in many health-related realms - from providers and payers looking to expedite the care continuum to pharma and biotech researchers looking to reduce costs and speed up the drug discovery and disease detection process. Researchers at Duke Center for Autism and Brain Development are using machine learning to screen for autism spectrum disorder (ASD) in children. It’s critically important to diagnose ASD as early in a child’s development as possible — starting treatment for ASD at an age of 18 to 24 months can increase a child’s IQ by up to 17 points—in some cases moving them into the “average” child IQ range of 90-110 (or above it)—and, in turn, significantly improving their quality of life. Currently, the wait time for children to receive a diagnosis could be well after the child’s third birthday. By combining the power of machine learning and computer vision, powered by AWS, an interdisciplinary team of researchers at Duke University have created a faster, less expensive, more reliable, and more accessible system to screen children for ASD.

Media and entertainment

Computer vision technology is helping sports organizations like the National Football League (NFL) improve the game for fans. The NFL works with AWS to develop real-time, state-of-the-art cloud technology leveraging machine learning and artificial intelligence to increase the efficiency and pace of the game.

For example, deep learning and computer vision technologies are being explored to aid game officiating including real-time football tracking. Within days, AWS and NFL scientists were able to create custom training data sets of thousands of images extracted from NFL broadcast game footage using Amazon SageMaker Ground Truth.

NFL football
Deep learning and computer vision technologies are being explored by the NFL to aid game officiating, including real-time football tracking.
CREDIT: National Foottball League

Working with the Amazon ML Solutions Lab, Amazon SageMaker and GluonCV with MXNet were used to train and optimize several state-of-the-art deep learning-based object detection models such as Faster-RCNN and Yolov3, to accurately detect the football across video frames. This led to a first-of-its-kind football tracking model that performs well in a number of complex scenarios, such as when the ball is highly occluded or is partially visible in different camera angles.

The NFL also uses computer vision to more easily and quickly search through thousands of media assets. The NFL photo team, official photographers of the NFL, has millions of photos in archive and generates 500,000 photos each season. Manually, they were able to tag 50,000 images over 18 months. By using Amazon Rekognition custom face collection, text in image, object detection, and Custom Labels, an automated machine learning object detection service, they were able to apply detailed tags for players, teams, objects, action, jerseys, location, etc. to their entire photo collection in a fraction of time it took previously. This allowed them to make these photos searchable and usable to everyone in the company in ways that weren't possible before.

For Sportradar, the global provider of sports and intelligence for the betting and media industries providing data coverage from more than 200,000 events annually, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.

Sports betting image for AWS customer success story
For Sportradar, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.
scyther5/Getty Images/iStockphoto

Sportradar is investing in computer vision research both through internal development and external partnerships to build computer vision data collection capabilities with an initial focus on tennis, soccer and snooker. Working with the Amazon ML Solutions Lab, Sportradar is exploring the application of state-of-the-art deep learning models for automated match event detection in soccer, moving beyond player and ball localization to understanding the intent of the play in terms of what is happening in the game.

To bring this technology into production as it matures, Sportradar is leveraging AWS services including Amazon SageMaker, EKS, MSK, FSx and Amazon’s broad range of GPU and CPU compute instances for its computer vision processing pipeline. This infrastructure allows Sportradar's researchers to test and validate computer vision models at scale and bring models from the lab to production with minimal effort while delivering the low latency, reliability and scalability needed for live sports betting use cases.

You can find more ways that AWS customers are innovating with computer vision here. More information about Amazon's participation at CVPR is available here.

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Device organization where our mission is to create a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful science leader in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have solid technical background and extensive experience in leading projects and technical teams. The ideal candidate would also have experiences in developing natural language processing systems (particularly LLM based systems) for industry applications, enjoy operating in highly dynamic and ambiguous environments, be self-motivated to take on challenging problems to deliver customer impact. In this role, you will lead a team of scientists to fine tune and evaluate the LLM to improve instruction following capabilities, align human preferences with RLHF, enhance conversation responses with RAG techniques, and various other. You will use your management, research and production experience to develop the team, communicate direction and achieve the results in a fast-paced environment. You will have significant influence on our overall LLM strategy by helping define product features, drive the system architecture, and spearhead the best practices that enable a quality product. Key job responsibilities Key job responsibilities Build a strong and coherent team with particular focus on sciences and innovations in LLM technologies for conversation AI applications Own the strategic planning and project management for technical initiatives in your team with the help of technical leads. Provide technical and scientific guidance to your team members. Collaborate effectively with multiple cross-organizational teams. Communicate effectively with senior management as well as with colleagues from science, engineering and business backgrounds. Support the career development of your team members.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.