How some of AWS's most innovative customers are using computer vision technologies

From counting fish to identifying touchdowns, AWS customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences.

Computer vision, the automatic recognition and description of images and video, has applications that are far-reaching, from identifying defects in high speed assembly lines and its use in autonomous robots, to the analysis of medical images, and the identification of products and people in social media. This week, in line with the IEEE Computer Vision and Pattern Recognition (CVPR) conference, we’ve rounded up examples of how some of AWS's most innovative customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences. This includes approaches such as data scientists building custom vision models using Amazon SageMaker, and application developers using Amazon Rekognition and Amazon Textract to embed computer vision into their applications.

Advertising

REA Group image
REA Group has developed an image compliance system that automatically detects any noncompliance and notifies home sellers.
fstop123/Getty Images

In advertising and other online media, computer vision can automate content moderation. REA Group, a multinational digital advertising company specializing in property and real estate, provides search-based portals that enable property sellers to upload images of properties on the market to deliver a wide, searchable selection to their consumers. REA Group discovered that images uploaded to their portal often weren’t compliant with their usage terms. Some images included trademarks or contact details of the sellers, which created lead attribution challenges. They set up a dedicated team of individuals to manually review the images for unapproved content, but the large volume of daily uploads and the additional review process delayed the property listing time by several days. The REA team developed an image compliance system that automatically detects any noncompliance and notifies sellers. To augment their existing machine learning models, they're using Amazon Rekognition Text in Image, which detects and extracts text in images, enabling them to increase the accuracy of detecting noncompliance and reduce false positives by more than 56 percent. They added business rules that factored in a variety of predictions from their own models, and from Amazon Rekognition, to enable automated decision-making.

Agriculture

fin.png
Aquabyte's machine learning algorithms can estimate how much a fish weighs while still in the water.

Agriculture has also benefited from computer vision. Fish farming is one of the most efficient sources of protein, since a pound of feed equates to nearly a pound of protein. But the cold, dark waters of fish habitats make it nearly impossible to effectively manage these farms from the surface. Historically, fish farmers have had to randomly scoop fish out of the water to measure their weight and check for disease. Aquabyte’s machine learning solution reimagines this process by using underwater cameras that keep tabs on the fish and compare photos of them over time. The machine learning algorithms, running on Amazon SageMaker, can estimate how much each fish weighs while it’s still in the water. The system can also monitor the fish for sea lice, a parasite that is a major problem in salmon farms, and the subject of significant regulation in Norway, where the bulk of Aquabyte’s client base currently operates. Without a solution like Aquabyte, managing sea lice amounts to nearly a quarter of the cost of operating a salmon farm. Aquabyte’s cameras have counted 2 million sea lice to date, the result of billions of images being captured. The Aquabyte team has been working on methods that would allow farmers to track individual fish for growth-tracking and breeding purposes. In the future, machine learning might even help automate elements of the farms by intelligently distributing fish feed, for example.

Autonomous driving

grid.png
DeepMap is focused on solving the mapping and localization challenge for autonomous vehicles.

Industries like autonomous driving wouldn’t even be possible without the help of computer vision. Perhaps you think the world is already sufficiently mapped. With the advent of satellite images and Google Street View, it seems like every square inch of the globe is represented in data. But for autonomous vehicles, much of the world is uncharted territory. That’s because the maps designed for humans “can’t be consumed by robots,” says Tom Wang, the director of engineering at DeepMap, a Palo Alto startup focused on solving the mapping and localization challenge for autonomous vehicles. According to Wang, these new kinds of vehicles need higher precision maps with richer semantics, things like the traffic signals, a lot of different traffic signs, driving boundaries, and connecting lanes. For DeepMap computer vision is critical. DeepMap needs to run a vast volume of image detections to automatically generate a comprehensive list of map features and detect dynamic road changes. Using Amazon SageMaker, DeepMap updates training models within a day and runs image detection on tens of millions of images on a daily basis to keep up with ever-changing conditions.

Education

Certipass, a UNI ISO standards accredited body for the certification of digital skills
Certipass was able to build their solution in under 30 days, enabling all their testing centers to test candidates online during the COVID-19 pandemic.
fizkes/Getty Images/iStockphoto

In the wake of the COVID-19 pandemic, many educational institutions needed to quickly pivot to the online proctoring of exams, leading to a need for new ways to verify identification. Certipass, a UNI ISO standards accredited body for the certification of digital skills, is the primary provider of the international digital competency certification –European Informatics Passport (EIPASS).

Since the EIPASS Certification is an international standard, Certipass has made it their mission to ensure maximum security, objectiveness, transparency, and fairness during the entire online evaluation process. Certipass used Amazon Rekognition for automated candidate identity verification during tests that are in line with e-Competence Framework for Information and Communication Technology (CEN) and The Digital Competence Framework for Citizens (Joint Research Centre). They were able to build the solution in under 30 days to enable all their testing centers to test candidates online during COVID-19.

Financial services

Aella Credit
Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data
Victor Karanja/Getty Images

In financial services, Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data. For those in emerging markets, identity verification and validation is one of the major challenges to accessing retail banking services. How can you know that people are who they say they are in communities that don't have proper identification systems? Aella Credit uses Amazon Rekognition to analyze images to verify a customer’s identity and give them access to financial and healthcare services with minimal friction. Amazon Rekognition helps to automate video and image analysis, with no machine learning expertise required. What would have taken days to verify someone’s identity manually, now happens in seconds. Customers can actually receive their loan in their account in less than five minutes, broadening access to credit.

Financial technology

To make sure users are getting the largest possible tax refund, Intuit incorporates machine learning throughout the TurboTax experience to help users file their taxes more efficiently. TurboTax uses machine learning to shorten the filing process, which takes an average of 13 hours.

Taxes image for AWS customer success story
TurboTax utilizes machine learning to shorten the filing process.
simpson33/Getty Images/iStockphoto

With Intuit’s computer vision capabilities supported by Amazon Textract, entering information from tax forms like W2s or 1099s takes seconds. Rather than a user having to enter form fields manually, the service scans pictures of the forms and digitizes them. Then, using contextual data from TurboTax’s existing database of tax codes and compliance forms, Amazon Textract verifies accuracy and identifies any anomalies or missing data for the user.

Healthcare

face.png
By combining the power of machine learning and computer vision, an interdisciplinary team of researchers at Duke University has created a faster, less expensive, more reliable, and more accessible system to screen children for autism spectrum disorder.

Machine learning plays a key role in many health-related realms - from providers and payers looking to expedite the care continuum to pharma and biotech researchers looking to reduce costs and speed up the drug discovery and disease detection process. Researchers at Duke Center for Autism and Brain Development are using machine learning to screen for autism spectrum disorder (ASD) in children. It’s critically important to diagnose ASD as early in a child’s development as possible — starting treatment for ASD at an age of 18 to 24 months can increase a child’s IQ by up to 17 points—in some cases moving them into the “average” child IQ range of 90-110 (or above it)—and, in turn, significantly improving their quality of life. Currently, the wait time for children to receive a diagnosis could be well after the child’s third birthday. By combining the power of machine learning and computer vision, powered by AWS, an interdisciplinary team of researchers at Duke University have created a faster, less expensive, more reliable, and more accessible system to screen children for ASD.

Media and entertainment

Computer vision technology is helping sports organizations like the National Football League (NFL) improve the game for fans. The NFL works with AWS to develop real-time, state-of-the-art cloud technology leveraging machine learning and artificial intelligence to increase the efficiency and pace of the game.

For example, deep learning and computer vision technologies are being explored to aid game officiating including real-time football tracking. Within days, AWS and NFL scientists were able to create custom training data sets of thousands of images extracted from NFL broadcast game footage using Amazon SageMaker Ground Truth.

NFL football
Deep learning and computer vision technologies are being explored by the NFL to aid game officiating, including real-time football tracking.
CREDIT: National Foottball League

Working with the Amazon ML Solutions Lab, Amazon SageMaker and GluonCV with MXNet were used to train and optimize several state-of-the-art deep learning-based object detection models such as Faster-RCNN and Yolov3, to accurately detect the football across video frames. This led to a first-of-its-kind football tracking model that performs well in a number of complex scenarios, such as when the ball is highly occluded or is partially visible in different camera angles.

The NFL also uses computer vision to more easily and quickly search through thousands of media assets. The NFL photo team, official photographers of the NFL, has millions of photos in archive and generates 500,000 photos each season. Manually, they were able to tag 50,000 images over 18 months. By using Amazon Rekognition custom face collection, text in image, object detection, and Custom Labels, an automated machine learning object detection service, they were able to apply detailed tags for players, teams, objects, action, jerseys, location, etc. to their entire photo collection in a fraction of time it took previously. This allowed them to make these photos searchable and usable to everyone in the company in ways that weren't possible before.

For Sportradar, the global provider of sports and intelligence for the betting and media industries providing data coverage from more than 200,000 events annually, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.

Sports betting image for AWS customer success story
For Sportradar, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.
scyther5/Getty Images/iStockphoto

Sportradar is investing in computer vision research both through internal development and external partnerships to build computer vision data collection capabilities with an initial focus on tennis, soccer and snooker. Working with the Amazon ML Solutions Lab, Sportradar is exploring the application of state-of-the-art deep learning models for automated match event detection in soccer, moving beyond player and ball localization to understanding the intent of the play in terms of what is happening in the game.

To bring this technology into production as it matures, Sportradar is leveraging AWS services including Amazon SageMaker, EKS, MSK, FSx and Amazon’s broad range of GPU and CPU compute instances for its computer vision processing pipeline. This infrastructure allows Sportradar's researchers to test and validate computer vision models at scale and bring models from the lab to production with minimal effort while delivering the low latency, reliability and scalability needed for live sports betting use cases.

You can find more ways that AWS customers are innovating with computer vision here. More information about Amazon's participation at CVPR is available here.

Related content

US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bangalore
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As a highly experienced and seasoned science leader, you will apply state of the art natural language processing and computer vision research to video centric digital media, while also responsible for creating and maintaining the best environment for applied science in order to recruit, retain and develop top talent. You will lead the research direction for a team of deeply talented applied scientists, creating the roadmaps for forward-looking research and communicate them effectively to senior leadership. You will also hire and develop applied scientists - growing the team to meet the evolving needs of our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment