How some of AWS's most innovative customers are using computer vision technologies

From counting fish to identifying touchdowns, AWS customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences.

Computer vision, the automatic recognition and description of images and video, has applications that are far-reaching, from identifying defects in high speed assembly lines and its use in autonomous robots, to the analysis of medical images, and the identification of products and people in social media. This week, in line with the IEEE Computer Vision and Pattern Recognition (CVPR) conference, we’ve rounded up examples of how some of AWS's most innovative customers are utilizing computer vision and pattern recognition technologies to improve business processes and customer experiences. This includes approaches such as data scientists building custom vision models using Amazon SageMaker, and application developers using Amazon Rekognition and Amazon Textract to embed computer vision into their applications.

Advertising

REA Group image
REA Group has developed an image compliance system that automatically detects any noncompliance and notifies home sellers.
fstop123/Getty Images

In advertising and other online media, computer vision can automate content moderation. REA Group, a multinational digital advertising company specializing in property and real estate, provides search-based portals that enable property sellers to upload images of properties on the market to deliver a wide, searchable selection to their consumers. REA Group discovered that images uploaded to their portal often weren’t compliant with their usage terms. Some images included trademarks or contact details of the sellers, which created lead attribution challenges. They set up a dedicated team of individuals to manually review the images for unapproved content, but the large volume of daily uploads and the additional review process delayed the property listing time by several days. The REA team developed an image compliance system that automatically detects any noncompliance and notifies sellers. To augment their existing machine learning models, they're using Amazon Rekognition Text in Image, which detects and extracts text in images, enabling them to increase the accuracy of detecting noncompliance and reduce false positives by more than 56 percent. They added business rules that factored in a variety of predictions from their own models, and from Amazon Rekognition, to enable automated decision-making.

Agriculture

fin.png
Aquabyte's machine learning algorithms can estimate how much a fish weighs while still in the water.

Agriculture has also benefited from computer vision. Fish farming is one of the most efficient sources of protein, since a pound of feed equates to nearly a pound of protein. But the cold, dark waters of fish habitats make it nearly impossible to effectively manage these farms from the surface. Historically, fish farmers have had to randomly scoop fish out of the water to measure their weight and check for disease. Aquabyte’s machine learning solution reimagines this process by using underwater cameras that keep tabs on the fish and compare photos of them over time. The machine learning algorithms, running on Amazon SageMaker, can estimate how much each fish weighs while it’s still in the water. The system can also monitor the fish for sea lice, a parasite that is a major problem in salmon farms, and the subject of significant regulation in Norway, where the bulk of Aquabyte’s client base currently operates. Without a solution like Aquabyte, managing sea lice amounts to nearly a quarter of the cost of operating a salmon farm. Aquabyte’s cameras have counted 2 million sea lice to date, the result of billions of images being captured. The Aquabyte team has been working on methods that would allow farmers to track individual fish for growth-tracking and breeding purposes. In the future, machine learning might even help automate elements of the farms by intelligently distributing fish feed, for example.

Autonomous driving

grid.png
DeepMap is focused on solving the mapping and localization challenge for autonomous vehicles.

Industries like autonomous driving wouldn’t even be possible without the help of computer vision. Perhaps you think the world is already sufficiently mapped. With the advent of satellite images and Google Street View, it seems like every square inch of the globe is represented in data. But for autonomous vehicles, much of the world is uncharted territory. That’s because the maps designed for humans “can’t be consumed by robots,” says Tom Wang, the director of engineering at DeepMap, a Palo Alto startup focused on solving the mapping and localization challenge for autonomous vehicles. According to Wang, these new kinds of vehicles need higher precision maps with richer semantics, things like the traffic signals, a lot of different traffic signs, driving boundaries, and connecting lanes. For DeepMap computer vision is critical. DeepMap needs to run a vast volume of image detections to automatically generate a comprehensive list of map features and detect dynamic road changes. Using Amazon SageMaker, DeepMap updates training models within a day and runs image detection on tens of millions of images on a daily basis to keep up with ever-changing conditions.

Education

Certipass, a UNI ISO standards accredited body for the certification of digital skills
Certipass was able to build their solution in under 30 days, enabling all their testing centers to test candidates online during the COVID-19 pandemic.
fizkes/Getty Images/iStockphoto

In the wake of the COVID-19 pandemic, many educational institutions needed to quickly pivot to the online proctoring of exams, leading to a need for new ways to verify identification. Certipass, a UNI ISO standards accredited body for the certification of digital skills, is the primary provider of the international digital competency certification –European Informatics Passport (EIPASS).

Since the EIPASS Certification is an international standard, Certipass has made it their mission to ensure maximum security, objectiveness, transparency, and fairness during the entire online evaluation process. Certipass used Amazon Rekognition for automated candidate identity verification during tests that are in line with e-Competence Framework for Information and Communication Technology (CEN) and The Digital Competence Framework for Citizens (Joint Research Centre). They were able to build the solution in under 30 days to enable all their testing centers to test candidates online during COVID-19.

Financial services

Aella Credit
Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data
Victor Karanja/Getty Images

In financial services, Aella Credit provides easy access to credit in emerging markets using biometric, employer, and mobile phone data. For those in emerging markets, identity verification and validation is one of the major challenges to accessing retail banking services. How can you know that people are who they say they are in communities that don't have proper identification systems? Aella Credit uses Amazon Rekognition to analyze images to verify a customer’s identity and give them access to financial and healthcare services with minimal friction. Amazon Rekognition helps to automate video and image analysis, with no machine learning expertise required. What would have taken days to verify someone’s identity manually, now happens in seconds. Customers can actually receive their loan in their account in less than five minutes, broadening access to credit.

Financial technology

To make sure users are getting the largest possible tax refund, Intuit incorporates machine learning throughout the TurboTax experience to help users file their taxes more efficiently. TurboTax uses machine learning to shorten the filing process, which takes an average of 13 hours.

Taxes image for AWS customer success story
TurboTax utilizes machine learning to shorten the filing process.
simpson33/Getty Images/iStockphoto

With Intuit’s computer vision capabilities supported by Amazon Textract, entering information from tax forms like W2s or 1099s takes seconds. Rather than a user having to enter form fields manually, the service scans pictures of the forms and digitizes them. Then, using contextual data from TurboTax’s existing database of tax codes and compliance forms, Amazon Textract verifies accuracy and identifies any anomalies or missing data for the user.

Healthcare

face.png
By combining the power of machine learning and computer vision, an interdisciplinary team of researchers at Duke University has created a faster, less expensive, more reliable, and more accessible system to screen children for autism spectrum disorder.

Machine learning plays a key role in many health-related realms - from providers and payers looking to expedite the care continuum to pharma and biotech researchers looking to reduce costs and speed up the drug discovery and disease detection process. Researchers at Duke Center for Autism and Brain Development are using machine learning to screen for autism spectrum disorder (ASD) in children. It’s critically important to diagnose ASD as early in a child’s development as possible — starting treatment for ASD at an age of 18 to 24 months can increase a child’s IQ by up to 17 points—in some cases moving them into the “average” child IQ range of 90-110 (or above it)—and, in turn, significantly improving their quality of life. Currently, the wait time for children to receive a diagnosis could be well after the child’s third birthday. By combining the power of machine learning and computer vision, powered by AWS, an interdisciplinary team of researchers at Duke University have created a faster, less expensive, more reliable, and more accessible system to screen children for ASD.

Media and entertainment

Computer vision technology is helping sports organizations like the National Football League (NFL) improve the game for fans. The NFL works with AWS to develop real-time, state-of-the-art cloud technology leveraging machine learning and artificial intelligence to increase the efficiency and pace of the game.

For example, deep learning and computer vision technologies are being explored to aid game officiating including real-time football tracking. Within days, AWS and NFL scientists were able to create custom training data sets of thousands of images extracted from NFL broadcast game footage using Amazon SageMaker Ground Truth.

NFL football
Deep learning and computer vision technologies are being explored by the NFL to aid game officiating, including real-time football tracking.
CREDIT: National Foottball League

Working with the Amazon ML Solutions Lab, Amazon SageMaker and GluonCV with MXNet were used to train and optimize several state-of-the-art deep learning-based object detection models such as Faster-RCNN and Yolov3, to accurately detect the football across video frames. This led to a first-of-its-kind football tracking model that performs well in a number of complex scenarios, such as when the ball is highly occluded or is partially visible in different camera angles.

The NFL also uses computer vision to more easily and quickly search through thousands of media assets. The NFL photo team, official photographers of the NFL, has millions of photos in archive and generates 500,000 photos each season. Manually, they were able to tag 50,000 images over 18 months. By using Amazon Rekognition custom face collection, text in image, object detection, and Custom Labels, an automated machine learning object detection service, they were able to apply detailed tags for players, teams, objects, action, jerseys, location, etc. to their entire photo collection in a fraction of time it took previously. This allowed them to make these photos searchable and usable to everyone in the company in ways that weren't possible before.

For Sportradar, the global provider of sports and intelligence for the betting and media industries providing data coverage from more than 200,000 events annually, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.

Sports betting image for AWS customer success story
For Sportradar, advances in computer vision are an opportunity to expand the depth of sports data offered to customers and reduce the costs of data collection through automation.
scyther5/Getty Images/iStockphoto

Sportradar is investing in computer vision research both through internal development and external partnerships to build computer vision data collection capabilities with an initial focus on tennis, soccer and snooker. Working with the Amazon ML Solutions Lab, Sportradar is exploring the application of state-of-the-art deep learning models for automated match event detection in soccer, moving beyond player and ball localization to understanding the intent of the play in terms of what is happening in the game.

To bring this technology into production as it matures, Sportradar is leveraging AWS services including Amazon SageMaker, EKS, MSK, FSx and Amazon’s broad range of GPU and CPU compute instances for its computer vision processing pipeline. This infrastructure allows Sportradar's researchers to test and validate computer vision models at scale and bring models from the lab to production with minimal effort while delivering the low latency, reliability and scalability needed for live sports betting use cases.

You can find more ways that AWS customers are innovating with computer vision here. More information about Amazon's participation at CVPR is available here.

Related content

US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
CA, ON, Toronto
The RBKS AI team is responsible for innovating AI features for Ring and Blink cameras, with a mission to make our neighborhoods safer. We are working at the intersection of computer vision, generative AI (GenAI), and ambient intelligence. The team is seeking Applied Science Manager to lead initiatives that combine advanced computer vision and multimodal GenAI capabilities. This role offers a unique opportunity to lead a world-class team while shaping next-generation home security technology and advancing the field of AI algorithms and systems. The team is focused on productizing research in computer vision and GenAI into products that benefit millions of customers worldwide, such as real-time object detection, video understanding, and multimodal LLMs. We are at the forefront of developing AI solutions that seamlessly blend into our products while respecting privacy, delivering unprecedented levels of intelligent security experience. Key job responsibilities - Lead and guide a team of applied scientists in designing and developing advanced computer vision and GenAI models and algorithms for comprehensive video understanding, including but not limited to object detection, recognition and spatial understanding - Drive technical strategy and roadmap for privacy-preserving CV and GenAI models and systems, ensuring the team delivers efficient fine-tuning and on-device and in-cloud inference solutions - Partner with product and engineering leadership to translate business objectives into technical roadmaps, and ensure delivery of high-quality science artifacts that ship to products - Build and maintain strategic partnerships with science, engineering, product, and program management teams across the organization - Recruit, mentor, and develop top-tier applied science talent; provide technical and career guidance to team members while fostering a culture of innovation and excellence - Set technical direction and establish best practices for AI products/features across multiple projects and initiatives