The breadth of Amazon's computer vision research is on display at ECCV

Research topics range from visual anomaly detection to road network extraction, regression-constrained neural-architecture search to self-supervised learning for video representations.

Amazon's contributions to this year's European Conference on Computer Vision (ECCV) reflect the diversity of the company's research interests. Below is a quick guide to the topics and methods of a dozen ECCV papers whose authors include Amazon scientists.

Fine-grained fashion representation learning by online deep clustering
Yang (Andrew) Jiao, Ning Xie, Yan Gao, Chien-Chih Wang, Yi Sun

Related content
Three papers at CVPR present complementary methods to improve product discovery.

Fashions are characterized by both global attributes, such as “skirt length”, and local attributes, such as “neckline style”. Accurate representations of such attributes are essential to tasks like fashion retrieval and fashion recommendation, but learning representations of each attribute independently ignores shared visual statistics among the attributes. Instead, the researchers treat representation learning as a multitask learning problem, enforcing cluster-level constraints on global structure. The learned representations improve fashion retrieval by a large margin.

GLASS: Global to local attention for scene-text spotting
Roi Ronen, Shahar Tsiper, Oron Anschel, Inbal Lavi, Amir Markovitz, R. Manmatha

Modern text-spotting models combine text detection and recognition into a single end-to-end framework, in which both tasks often rely on a shared global feature map. Such models, however, struggle to recognize text across scale variations (smaller or larger text) and arbitrary word rotation angles. The researchers propose a novel attention mechanism for text spotting, called GLASS, that fuses together global and local features. The global features are extracted from the shared backbone, while the local features are computed individually on resized, high-resolution word crops with upright orientation. GLASS achieves state-of-the-art results on multiple public benchmarks, and the researchers show that it can be integrated with other text-spotting solutions, improving their performance.

GLASS.png
A novel attention mechanism for text spotting, called GLASS, fuses together global and local features. From "GLASS: Global to local attention for scene-text spotting".

Large scale real-world multi-person tracking
Bing Shuai, Alessandro Bergamo, Uta Buechler, Andrew Berneshawi, Alyssa Boden, Joseph Tighe

Related content
ICCV workshop hosted by Amazon Prime Air and AWS will announce results of challenge to detect airborne obstacles.

This paper presents a new multi-person tracking dataset — PersonPath22 — which is more than an order of magnitude larger than existing high-quality multi-object tracking datasets. The PersonPath22 dataset is specifically sourced to provide a wide variety of conditions, and its annotations include rich metadata that allows the performance of a tracker to be evaluated along these different dimensions. Its large-scale real-world training and test data enable the community to better understand the performance of multi-person tracking systems in a range of scenarios and conditions.

MaCLR: Motion-aware contrastive Learning of representations for videos
Fanyi Xiao, Joseph Tighe, Davide Modolo

Attempts to use self-supervised learning for video have had some success, but existing approaches don’t make explicit use of motion information derived from the temporal sequence, which is important for supervised action recognition tasks. The researchers propose a self-supervised video representation-learning method that explicitly models motion cues during training. The method, MaCLR, consists of two pathways, visual and motion, connected by a novel cross-modal contrastive objective that enables the motion pathway to guide the visual pathway toward relevant motion cues.

MACLR.png
A frame of video (top left) and three different methods of capturing motion. From "MaCLR: Motion-aware contrastive Learning of representations for videos".

PSS: Progressive sample selection for open-world visual representation learning
Tianyue Cao, Yongxin Wang, Yifan Xing, Tianjun Xiao, Tong He, Zheng Zhang, Hao Zhou, Joseph Tighe

Related content
New end-to-end approach to zero-shot video classification dramatically outperforms predecessors.

In computer vision, open-world representation learning is the challenge of learning representations for categories of images not seen during training. Existing approaches make unrealistic assumptions, such as foreknowledge of the number of categories the unseen images fall into, or the ability to determine in advance which unlabeled training examples fall into unseen categories. The researchers’ novel progressive approach avoids such assumptions, selecting at each iteration unlabeled samples that are highly homogenous but belong to classes that are distant from the current set of known classes. High-quality pseudo-labels generated via clustering over these selected samples then improve the feature generalization iteratively.

Rayleigh EigenDirections (REDs): Nonlinear GAN latent space traversals for multidimensional features
Guha Balakrishnan, Raghudeep Gadde, Aleix Martinez, Pietro Perona

Generative adversarial networks (GANs) can map points in a latent space to images, producing extremely realistic synthetic data. Past attempts to control GANs’ outputs have looked for linear trajectories through the space that correspond, approximately, to continuous variation of a particular image feature. The researchers propose a new method for finding nonlinear trajectories through the space, providing unprecedented control over GANs’ outputs, including the ability to hold specified image features fixed while varying others.

Rethinking few-shot object detection on a multi-domain benchmark
Kibok Lee, Hao Yang, Satyaki Chakraborty, Zhaowei Cai, Gurumurthy Swaminathan, Avinash Ravichandran, Onkar Dabeer

Related content
New “meta-learning” approach improves on the state of the art in “one-shot” learning.

Most existing work on few-shot object detection (FSOD) focuses on settings where both the pretraining and few-shot learning datasets are from similar domains. The researchers propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms across a greater variety of applications. They comprehensively analyze the effects of freezing layers, different architectures, and different pretraining datasets on FSOD performance, drawing several surprising conclusions. One of these is that, contrary to prior belief, on a multidomain benchmark, fine-tuning (FT) is a strong baseline for FSOD.

SPot-the-Difference: Self-supervised pre-training for anomaly detection and segmentation
Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, Onkar Dabeer

Visual anomaly detection is commonly used in industrial quality inspection. This paper presents a new dataset and a new self-supervised learning method for ImageNet pretraining to improve anomaly detection and segmentation in 1-class and 2-class 5/10/high-shot training setups. The Visual Anomaly (VisA) Dataset consists of 10,821 high-resolution color images (9,621 normal and 1,200 anomalous samples) covering 12 objects in three domains, making it one of the largest industrial anomaly detection datasets to date. The paper also proposes a new self-supervised framework — SPot-the-Difference (SPD) — that can regularize contrastive self-supervised and also supervised pretraining to better handle anomaly detection tasks.

SPD contrastive learning.png
Conventional contrastive learning (left) and the contrastive-learning scheme used in SPD (spot-the-difference) training. From "SPot-the-difference: Self-supervised pre-training for anomaly detection and segmentation".

TD-Road: Top-down road network extraction with holistic graph construction
Yang He, Ravi Garg, Amber Roy Chowdhury

Road network extraction from satellite imagery is essential for constructing rich maps and enabling numerous applications in route planning and navigation. Previous graph-based methods used a bottom-up approach, estimating local information and extending a graph iteratively. This paper, by contrast, proposes a top-down approach that decomposes the problem into two subtasks: key point prediction and connectedness prediction. Unlike previous approaches, the proposed method applies graph structures (i.e., locations of nodes and connections between them) as training supervisions for deep neural networks and directly generates road graph outputs through inference.

TD-road.png
A satellite image (left) and three methods for extracting road networks from it: segmentation, bottom-up-graph-based methods, and a new top-down graph-based method (far right). From "TD-Road: Top-down road network extraction with holistic graph construction."

Towards regression-free neural networks for diverse compute platforms
Rahul Duggal, Hao Zhou, Shuo Yang, Jun Fang, Yuanjun Xiong, Wei Xia

Related content
New approach corrects for cases when average improvements are accompanied by specific regressions.

Commercial machine learning models are constantly being updated, and while an updated model may improve performance on average, it can still regress — i.e., suffer “negative flips” — on particular inputs it used to handle correctly. This paper introduces regression-constrained neural-architecture search (REG-NAS), which consists of two components: (1) a novel architecture constraint that enables a larger model to contain all the weights of a smaller one, thus maximizing weight sharing, and (2) a novel search reward that incorporates both top-1 accuracy and negative flips in the architecture search metric. Relative to the existing state-of-the-art approach, REG-NAS enables 33 – 48% reduction of negative flips.

Unsupervised and semi-supervised bias benchmarking in face recognition
Alexandra Chouldechova, Siqi Deng, Yongxin Wang, Wei Xia, Pietro Perona

This paper introduces semi-supervised performance evaluation for face recognition (SPE-FR), a statistical method for evaluating the performance and algorithmic bias of face verification systems when identity labels are unavailable or incomplete. The method is based on parametric Bayesian modeling of face embedding similarity scores, and it produces point estimates, performance curves, and confidence bands that reflect uncertainty in the estimation procedure. Experiments show that SPE-FR can accurately assess performance on data with no identity labels and confidently reveal demographic biases in system performance.

X-DETR: A versatile architecture for instance-wise vision-language tasks
Zhaowei Cai, Gukyeong Kwon, Avinash Ravichandran, Erhan Bas, Zhuowen Tu, Rahul Bhotika, Stefano Soatto

Related content
Two methods presented at CVPR achieve state-of-the-art results by imposing additional structure on the representational space.

This paper addresses the challenge of instance-wise vision-language tasks, which require free-form language to align with objects inside an image, rather than the image itself. The paper presents the X-DETR model, whose architecture has three major components: an object detector, a language encoder, and a vision-language alignment module. The vision and language streams are independent until the end, and they are aligned using an efficient dot-product operation. This simple architecture shows good accuracy and fast speeds for multiple instance-wise vision-language tasks, such as open-vocabulary object detection.

X-DETR.png
X-DETR addresses the challenge of instance-wise vision-language tasks, which require free-form language to align with objects inside an image, rather than the image itself. From "X-DETR: A versatile architecture for instance-wise vision-language tasks".

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.