careers-lead-image

Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds across diverse fields including artificial intelligence, robotics, computer vision, economics, and sustainability. Join us in pioneering solutions to complex challenges that not only delight our customers but also help define the future of technology.
  • The program is designed for academics from universities around the globe who want to work on large-scale technical challenges while continuing to teach and conduct research at their universities.
  • The program offers recent PhD graduates an opportunity to advance research while working alongside experienced scientists with backgrounds in industry and academia.
  • Our internship roles span research areas to provide hands-on experience working alongside world-class scientists and engineers to advance the state of the art in your field.
525 results found
  • (Updated 4 days ago)
    Do you want to be part of a team that's revolutionizing Amazon's fulfillment and packaging technology? Are you ready to optimize systems that process tens-of-millions of customer packages daily with the lowest cost to serve and a defect-free customer experience? Do you have a passion for solving complex science challenges and building a sustainable e-commerce experience? The Robotics Delivery and Packaging Innovation (RDPI) team is seeking an Applied Scientist who will join a team of experts in the field of Machine Learning (ML), Statistics, Operations Research, Computer Vision and Generative AI to work together to break new ground in the world of automated packaging solutions. The RDPI team owns mission-critical automation and packaging solutions that impact billions of customer shipments annually across Amazon’s WW marketplaces. We manage billions of dollars in material spend and packaging labor costs while driving significant reductions in carbon emissions. Our team is revolutionizing e-commerce through advanced packaging automation, innovative sortation technology, and sustainable solutions. We're dramatically reducing single-use plastics across our network while developing next-generation automated solutions that can handle the majority of our packaging needs. We're also transforming our supply chain through strategic investments in paper manufacturing and innovative materials, driving both substantial cost savings and environmental benefits. This is an exciting opportunity to work on large-scale automation challenges that directly impact customer experience, operational efficiency, and environmental sustainability at one of the world's largest e-commerce companies. You'll work in a collaborative environment where you can pursue ambitious research with many peta-bytes of data, work on problems that haven’t been solved before, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers, and publish your research. You'll see the work you do directly improve the packaging experience of Amazon customers in the fulfillment technology space. If you are interested in robotics, computer vision, machine learning, operations research, statistics, big data, and building scalable solutions, this role is for you. Key job responsibilities A successful candidate in this role may perform some or all of the following responsibilities: - Leverage generative AI technologies to develop scalable solutions for automated product compatibility and safety assessments (e.g., evaluating product shipping compatibility, safety requirements, and packaging configurations) - Develop advanced AI models by extracting predictive features from multiple data sources (product/packaging images, product descriptions, sensor data, geospatial data) to forecast package-related damages and optimize packaging decisions based on customer preference prediction - Develop and implement computer vision solutions to automate packaging workflows and detect product/packaging defects in real-time operations - Build causal inference model to capture the downstream impacts of different packaging designs and delivery experience - Design and implement robotic control algorithms to optimize machine efficiency and meet diverse business objectives A day in the life Scientists on our team work daily with dedicated product and engineering partners to bring innovative solutions from concept to production. You'll divide your time between deep technical work—building models, analyzing results, iterating on algorithms—and collaborative activities like design reviews, stakeholder presentations, and cross-functional planning. You'll also have opportunities to support science initiatives across the broader RDPI organization (1500+ people), partnering with diverse teams to solve high-impact problems and scale your solutions across Amazon. About the team We are a team of scientists with diverse technical backgrounds spanning Machine Learning, Operations Research, Causal Inference, and Econometrics. We tackle complex, high-impact problems that directly influence Amazon's strategic decisions and financial performance. Our solutions typically require combining multiple methodologies, and you'll work collaboratively with other scientists while partnering closely with product and engineering teams to bring your innovations into production systems. You'll have the opportunity to grow your expertise across disciplines while delivering measurable business impact at scale.
  • (Updated 4 days ago)
    Do you want to be part of a team that's revolutionizing Amazon's fulfillment and packaging technology? Are you ready to optimize systems that process tens-of-millions of customer packages daily with the lowest cost to serve and a defect-free customer experience? Do you have a passion for solving complex science challenges and building a sustainable e-commerce experience? The Robotics Delivery and Packaging Innovation (RDPI) team is seeking an Applied Scientist who will join a team of experts in the field of Machine Learning (ML), Statistics, Operations Research, Computer Vision and Generative AI to work together to break new ground in the world of automated packaging solutions. The RDPI team owns mission-critical automation and packaging solutions that impact billions of customer shipments annually across Amazon’s WW marketplaces. We manage billions of dollars in material spend and packaging labor costs while driving significant reductions in carbon emissions. Our team is revolutionizing e-commerce through advanced packaging automation, innovative sortation technology, and sustainable solutions. We're dramatically reducing single-use plastics across our network while developing next-generation automated solutions that can handle the majority of our packaging needs. We're also transforming our supply chain through strategic investments in paper manufacturing and innovative materials, driving both substantial cost savings and environmental benefits. This is an exciting opportunity to work on large-scale automation challenges that directly impact customer experience, operational efficiency, and environmental sustainability at one of the world's largest e-commerce companies. You'll work in a collaborative environment where you can pursue ambitious research with many peta-bytes of data, work on problems that haven’t been solved before, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers, and publish your research. You'll see the work you do directly improve the packaging experience of Amazon customers in the fulfillment technology space. If you are interested in robotics, computer vision, machine learning, operations research, statistics, big data, and building scalable solutions, this role is for you. Key job responsibilities A successful candidate in this role may perform some or all of the following responsibilities: - Leverage generative AI technologies to develop scalable solutions for automated product compatibility and safety assessments (e.g., evaluating product shipping compatibility, safety requirements, and packaging configurations) - Develop advanced AI models by extracting predictive features from multiple data sources (product/packaging images, product descriptions, sensor data, geospatial data) to forecast package-related damages and optimize packaging decisions based on customer preference prediction - Develop and implement computer vision solutions to automate packaging workflows and detect product/packaging defects in real-time operations - Build causal inference model to capture the downstream impacts of different packaging designs and delivery experience - Design and implement robotic control algorithms to optimize machine efficiency and meet diverse business objectives A day in the life Scientists on our team work daily with dedicated product and engineering partners to bring innovative solutions from concept to production. You'll divide your time between deep technical work—building models, analyzing results, iterating on algorithms—and collaborative activities like design reviews, stakeholder presentations, and cross-functional planning. You'll also have opportunities to support science initiatives across the broader RDPI organization (1500+ people), partnering with diverse teams to solve high-impact problems and scale your solutions across Amazon. About the team We are a team of scientists with diverse technical backgrounds spanning Machine Learning, Operations Research, Causal Inference, and Econometrics. We tackle complex, high-impact problems that directly influence Amazon's strategic decisions and financial performance. Our solutions typically require combining multiple methodologies, and you'll work collaboratively with other scientists while partnering closely with product and engineering teams to bring your innovations into production systems. You'll have the opportunity to grow your expertise across disciplines while delivering measurable business impact at scale.
  • (Updated 4 days ago)
    Sponsored Products and Brands (SPB) is at the heart of Amazon Advertising, helping millions of advertisers—from small businesses to global brands—connect with customers at the moments that matter most. Our advertising solutions enable sellers, vendors, and brand owners to grow their businesses by reaching shoppers with relevant, engaging ads across Amazon's store and beyond. We're obsessed with delivering measurable results for advertisers while creating a delightful shopping experience for customers. Are you interested in defining the science behind the future of advertising? Sponsored Products and Brands science teams are pioneering breakthrough agentic AI systems—pushing the boundaries of large language models, autonomous reasoning, planning, and decision-making to build intelligent agents that fundamentally transform how advertisers succeed on Amazon. As an SPB applied science leader, you'll have end-to-end ownership of the product and scientific vision, research agenda, model architectures, and evaluation frameworks required to deliver state-of-the-art agentic AI solutions for our advertising customers. You'll get to work on problems that are fast-paced, scientifically rich, and deeply consequential. You'll also be able to explore novel research directions, take bold bets, and collaborate with remarkable scientists, engineers, and product leaders. We'll look for you to bring your diverse perspectives, deep technical expertise, and scientific rigor to make Amazon Advertising even better for our advertisers and customers. With global opportunities for talented scientists and science leaders, you can decide where a career in Amazon Ads Science takes you! We are kicking off a new initiative within SPB to leverage agentic AI solutions to revolutionize how advertisers create, manage, and optimize their advertising campaigns. This is a unique opportunity to lead a business-critical applied science initiative from its inception—defining the scientific charter, establishing foundational research pillars, and building a multi-year science roadmap for transformative impact. As the single-threaded applied science leader, you will build and guide a dedicated team of applied scientists, research scientists, and machine learning engineers, working closely with cross-functional engineering and product partners, to research, develop, and deploy agentic AI systems that fundamentally reimagine the advertiser journey. Your charter will begin with advancing the science behind intelligent agents that simplify campaign creation, automate optimization decisions through autonomous reasoning and planning, and deliver personalized advertising strategies at scale. You will pioneer novel approaches in areas such as LLM-based agent architectures, multi-step planning and tool use, retrieval-augmented generation, reinforcement learning from human and business feedback, and robust evaluation methodologies for agentic systems. You will expand to proactively identify and tackle the next generation of AI-powered advertising experiences across the entire SPB portfolio. This high-visibility role places you as the science leader driving our strategy to democratize advertising success—making it effortless for advertisers of all sizes to achieve their business goals while delivering relevant experiences for Amazon customers. Key job responsibilities Build, mentor, and lead a new, high-performing applied science organization of applied scientists, research scientists, and engineers, fostering a culture of scientific excellence, innovation, customer obsession, and ownership. Define, own, and drive the long-term scientific and product vision and research strategy for agentic AI-powered advertising experiences across Sponsored Products and Brands—identifying the highest-impact research problems and charting a path from exploration to production. Lead the research, design, and development of novel agentic AI models and systems—including LLM-based agent architectures, multi-agent orchestration, planning and reasoning frameworks, tool-use mechanisms, and retrieval-augmented generation pipelines—that deliver measurable value for advertisers and create delightful, intuitive experiences. Establish rigorous scientific methodology and evaluation frameworks for assessing agent performance, reliability, safety, and advertiser outcomes, setting a high bar for experimentation, reproducibility, and offline-to-online consistency. Partner closely with senior business, engineering, and product leaders across Amazon Advertising to translate advertiser pain points and business opportunities into well-defined science problems, and deliver cohesive, production-ready solutions that drive advertiser success. Drive execution from research to production at scale, ensuring models and agentic systems meet high standards for quality, robustness, latency, safety, and reliability for mission-critical advertising services operating at Amazon scale. Champion a culture of scientific inquiry and technical depth that encourages bold experimentation, publication of novel research, relentless simplification, and continuous improvement. Communicate your team's scientific vision, research breakthroughs, strategy, and progress to senior leadership and key stakeholders, ensuring alignment with broader Amazon Advertising objectives and contributing to Amazon's position at the forefront of applied AI. Develop a science roadmap directly tied to advertiser outcomes, revenue growth, and business plans, delivering on commitments for high-impact research and modeling initiatives that shape the future of AI-powered digital advertising.
  • (Updated 3 days ago)
    This position requires that the candidate selected be a US Citizen and must currently possess and maintain an active TS/SCI security clearance with polygraph. The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Data Scientist to join our team at Amazon Web Services (AWS). Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? In this role, you'll work directly with customers to design, evangelize, implement, and scale AI/ML solutions that meet their technical requirements and business objectives. You'll be a key player in driving customer success through their AI transformation journey, providing deep expertise in data science, machine learning, generative AI, and best practices throughout the project lifecycle. As a Data Scientist within the AWS Professional Services organization, you will be proficient in architecting complex, scalable, and secure machine learning solutions tailored to meet the specific needs of each customer. You'll help customers imagine and scope the use cases that will create the greatest value for their businesses, develop statistical models and analytical frameworks, select and train the right models, and define paths to navigate technical or business challenges. Working closely with stakeholders, you'll assess current data infrastructure, perform exploratory data analysis, develop proof-of-concepts, and propose effective strategies for implementing AI and generative AI solutions at scale. You will design and run experiments, research new algorithms, extract insights from complex datasets, and find new ways of optimizing risk, profitability, and customer experience. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities - Designing and implementing complex, scalable, and secure AI/ML solutions on AWS tailored to customer needs, including developing statistical models, performing feature engineering, and selecting appropriate algorithms for specific use cases - Developing and deploying machine learning models and generative AI applications that solve real-world business problems, conducting experiments, performing rigorous statistical analysis, and optimizing for performance at scale - Collaborating with customer stakeholders to identify high-value AI/ML use cases, gather requirements, analyze data quality and availability, and propose effective strategies for implementing machine learning and generative AI solutions - Providing technical guidance on applying AI, machine learning, and generative AI responsibly and cost-efficiently, performing model validation and interpretation, troubleshooting throughout project delivery, and ensuring adherence to best practices - Acting as a trusted advisor to customers on the latest advancements in AI/ML, emerging technologies, statistical methodologies, and innovative approaches to leveraging diverse data sources for maximum business impact - Sharing knowledge within the organization through mentoring, training, creating reusable AI/ML artifacts and analytical frameworks, and working with team members to prototype new technologies and evaluate technical feasibility
  • (Updated 3 days ago)
    This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop computer vision models on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: Exploring the data and brainstorming and prioritizing ideas for model development Implementing new features in our sizable code base Training models in support of experimental or performance goals T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. Three to four days a week, you would travel to the customer site in Northern Virginia to perform tasking as described below. Weekdays when you do not travel to the customer site, you would work from your local Amazon office. You would work collaboratively with teammates to use and contribute to a well-maintained code base that the team has developed over the last several years, almost entirely in python. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, Apache AirFlow, GitLab, and Visual Studio Code. We are a very collaborative team, and regularly teach and learn from each other, so, if you are familiar with some of these technologies, but unfamiliar with others, we encourage you to apply - especially if you are someone who likes to learn. We are always learning on the job ourselves. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to develop computer vision models on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train deep neural network models on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Incorporate model R&D from low-side researchers - Implement new features to the model development code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
  • US, WA, Seattle
    Job ID: 3182300
    (Updated 0 days ago)
    Are you passionate about leading teams that apply formal verification, program analysis, constraint-solving, and theorem proving to solve critical customer problems at scale? Do you want to build and grow organizations that create products customers love? If so, then we have an exciting opportunity for you. In this role, you will define the technical vision and science agenda for your organization, working across AWS to identify high-impact opportunities where automated reasoning can transform customer experiences. You will build, mentor, and grow a team of world-class applied scientists and engineers, establishing your organization as a center of excellence in formal methods. You will represent AWS to the academic community, industry partners, and customers, shaping the future direction of automated reasoning in cloud computing. Key job responsibilities Define and drive the science agenda for your organization, identifying ambiguous problem spaces where formal methods can deliver transformational customer value Establish technical vision across multiple product areas, ensuring alignment with AWS-wide security, safety, and correctness initiatives Present and defend organization-wide technical decisions to senior leadership and represent AWS at premier academic conferences and industry forums Serve as functional thought leader for automated reasoning across AWS, sought after for strategic technical decisions by VP-level stakeholders Build partnerships with academic institutions and industry leaders to advance the state of the art in formal verification and program analysis Recruit, develop, and retain world-class talent in formal verification, program analysis, and GenAI Mentor and grow applied scientists from mid-level to principal level, with demonstrated track record of developing technical leaders Own end-to-end delivery of multiple customer-facing products leveraging formal methods, AI, and ML. Drive products from research prototype to production systems serving millions of customers Establish metrics and mechanisms to measure customer impact and business value of science initiatives Scale solutions to meet rapidly growing customer demand while maintaining scientific rigor Partner with product and engineering leaders to translate customer needs into research directions
  • US, WA, Seattle
    Job ID: 3178355
    (Updated 6 days ago)
    We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
  • (Updated 0 days ago)
    Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
  • US, NY, New York
    Job ID: 3177499
    (Updated 7 days ago)
    Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
  • US, WA, Bellevue
    Job ID: 3177222
    (Updated 7 days ago)
    Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.