The breadth of Amazon's computer vision research is on display at ECCV

Research topics range from visual anomaly detection to road network extraction, regression-constrained neural-architecture search to self-supervised learning for video representations.

Amazon's contributions to this year's European Conference on Computer Vision (ECCV) reflect the diversity of the company's research interests. Below is a quick guide to the topics and methods of a dozen ECCV papers whose authors include Amazon scientists.

Fine-grained fashion representation learning by online deep clustering
Yang (Andrew) Jiao, Ning Xie, Yan Gao, Chien-Chih Wang, Yi Sun

Related content
Three papers at CVPR present complementary methods to improve product discovery.

Fashions are characterized by both global attributes, such as “skirt length”, and local attributes, such as “neckline style”. Accurate representations of such attributes are essential to tasks like fashion retrieval and fashion recommendation, but learning representations of each attribute independently ignores shared visual statistics among the attributes. Instead, the researchers treat representation learning as a multitask learning problem, enforcing cluster-level constraints on global structure. The learned representations improve fashion retrieval by a large margin.

GLASS: Global to local attention for scene-text spotting
Roi Ronen, Shahar Tsiper, Oron Anschel, Inbal Lavi, Amir Markovitz, R. Manmatha

Modern text-spotting models combine text detection and recognition into a single end-to-end framework, in which both tasks often rely on a shared global feature map. Such models, however, struggle to recognize text across scale variations (smaller or larger text) and arbitrary word rotation angles. The researchers propose a novel attention mechanism for text spotting, called GLASS, that fuses together global and local features. The global features are extracted from the shared backbone, while the local features are computed individually on resized, high-resolution word crops with upright orientation. GLASS achieves state-of-the-art results on multiple public benchmarks, and the researchers show that it can be integrated with other text-spotting solutions, improving their performance.

GLASS.png
A novel attention mechanism for text spotting, called GLASS, fuses together global and local features. From "GLASS: Global to local attention for scene-text spotting".

Large scale real-world multi-person tracking
Bing Shuai, Alessandro Bergamo, Uta Buechler, Andrew Berneshawi, Alyssa Boden, Joseph Tighe

Related content
ICCV workshop hosted by Amazon Prime Air and AWS will announce results of challenge to detect airborne obstacles.

This paper presents a new multi-person tracking dataset — PersonPath22 — which is more than an order of magnitude larger than existing high-quality multi-object tracking datasets. The PersonPath22 dataset is specifically sourced to provide a wide variety of conditions, and its annotations include rich metadata that allows the performance of a tracker to be evaluated along these different dimensions. Its large-scale real-world training and test data enable the community to better understand the performance of multi-person tracking systems in a range of scenarios and conditions.

MaCLR: Motion-aware contrastive Learning of representations for videos
Fanyi Xiao, Joseph Tighe, Davide Modolo

Attempts to use self-supervised learning for video have had some success, but existing approaches don’t make explicit use of motion information derived from the temporal sequence, which is important for supervised action recognition tasks. The researchers propose a self-supervised video representation-learning method that explicitly models motion cues during training. The method, MaCLR, consists of two pathways, visual and motion, connected by a novel cross-modal contrastive objective that enables the motion pathway to guide the visual pathway toward relevant motion cues.

MACLR.png
A frame of video (top left) and three different methods of capturing motion. From "MaCLR: Motion-aware contrastive Learning of representations for videos".

PSS: Progressive sample selection for open-world visual representation learning
Tianyue Cao, Yongxin Wang, Yifan Xing, Tianjun Xiao, Tong He, Zheng Zhang, Hao Zhou, Joseph Tighe

Related content
New end-to-end approach to zero-shot video classification dramatically outperforms predecessors.

In computer vision, open-world representation learning is the challenge of learning representations for categories of images not seen during training. Existing approaches make unrealistic assumptions, such as foreknowledge of the number of categories the unseen images fall into, or the ability to determine in advance which unlabeled training examples fall into unseen categories. The researchers’ novel progressive approach avoids such assumptions, selecting at each iteration unlabeled samples that are highly homogenous but belong to classes that are distant from the current set of known classes. High-quality pseudo-labels generated via clustering over these selected samples then improve the feature generalization iteratively.

Rayleigh EigenDirections (REDs): Nonlinear GAN latent space traversals for multidimensional features
Guha Balakrishnan, Raghudeep Gadde, Aleix Martinez, Pietro Perona

Generative adversarial networks (GANs) can map points in a latent space to images, producing extremely realistic synthetic data. Past attempts to control GANs’ outputs have looked for linear trajectories through the space that correspond, approximately, to continuous variation of a particular image feature. The researchers propose a new method for finding nonlinear trajectories through the space, providing unprecedented control over GANs’ outputs, including the ability to hold specified image features fixed while varying others.

Rethinking few-shot object detection on a multi-domain benchmark
Kibok Lee, Hao Yang, Satyaki Chakraborty, Zhaowei Cai, Gurumurthy Swaminathan, Avinash Ravichandran, Onkar Dabeer

Related content
New “meta-learning” approach improves on the state of the art in “one-shot” learning.

Most existing work on few-shot object detection (FSOD) focuses on settings where both the pretraining and few-shot learning datasets are from similar domains. The researchers propose a Multi-dOmain Few-Shot Object Detection (MoFSOD) benchmark consisting of 10 datasets from a wide range of domains to evaluate FSOD algorithms across a greater variety of applications. They comprehensively analyze the effects of freezing layers, different architectures, and different pretraining datasets on FSOD performance, drawing several surprising conclusions. One of these is that, contrary to prior belief, on a multidomain benchmark, fine-tuning (FT) is a strong baseline for FSOD.

SPot-the-Difference: Self-supervised pre-training for anomaly detection and segmentation
Yang Zou, Jongheon Jeong, Latha Pemula, Dongqing Zhang, Onkar Dabeer

Visual anomaly detection is commonly used in industrial quality inspection. This paper presents a new dataset and a new self-supervised learning method for ImageNet pretraining to improve anomaly detection and segmentation in 1-class and 2-class 5/10/high-shot training setups. The Visual Anomaly (VisA) Dataset consists of 10,821 high-resolution color images (9,621 normal and 1,200 anomalous samples) covering 12 objects in three domains, making it one of the largest industrial anomaly detection datasets to date. The paper also proposes a new self-supervised framework — SPot-the-Difference (SPD) — that can regularize contrastive self-supervised and also supervised pretraining to better handle anomaly detection tasks.

SPD contrastive learning.png
Conventional contrastive learning (left) and the contrastive-learning scheme used in SPD (spot-the-difference) training. From "SPot-the-difference: Self-supervised pre-training for anomaly detection and segmentation".

TD-Road: Top-down road network extraction with holistic graph construction
Yang He, Ravi Garg, Amber Roy Chowdhury

Road network extraction from satellite imagery is essential for constructing rich maps and enabling numerous applications in route planning and navigation. Previous graph-based methods used a bottom-up approach, estimating local information and extending a graph iteratively. This paper, by contrast, proposes a top-down approach that decomposes the problem into two subtasks: key point prediction and connectedness prediction. Unlike previous approaches, the proposed method applies graph structures (i.e., locations of nodes and connections between them) as training supervisions for deep neural networks and directly generates road graph outputs through inference.

TD-road.png
A satellite image (left) and three methods for extracting road networks from it: segmentation, bottom-up-graph-based methods, and a new top-down graph-based method (far right). From "TD-Road: Top-down road network extraction with holistic graph construction."

Towards regression-free neural networks for diverse compute platforms
Rahul Duggal, Hao Zhou, Shuo Yang, Jun Fang, Yuanjun Xiong, Wei Xia

Related content
New approach corrects for cases when average improvements are accompanied by specific regressions.

Commercial machine learning models are constantly being updated, and while an updated model may improve performance on average, it can still regress — i.e., suffer “negative flips” — on particular inputs it used to handle correctly. This paper introduces regression-constrained neural-architecture search (REG-NAS), which consists of two components: (1) a novel architecture constraint that enables a larger model to contain all the weights of a smaller one, thus maximizing weight sharing, and (2) a novel search reward that incorporates both top-1 accuracy and negative flips in the architecture search metric. Relative to the existing state-of-the-art approach, REG-NAS enables 33 – 48% reduction of negative flips.

Unsupervised and semi-supervised bias benchmarking in face recognition
Alexandra Chouldechova, Siqi Deng, Yongxin Wang, Wei Xia, Pietro Perona

This paper introduces semi-supervised performance evaluation for face recognition (SPE-FR), a statistical method for evaluating the performance and algorithmic bias of face verification systems when identity labels are unavailable or incomplete. The method is based on parametric Bayesian modeling of face embedding similarity scores, and it produces point estimates, performance curves, and confidence bands that reflect uncertainty in the estimation procedure. Experiments show that SPE-FR can accurately assess performance on data with no identity labels and confidently reveal demographic biases in system performance.

X-DETR: A versatile architecture for instance-wise vision-language tasks
Zhaowei Cai, Gukyeong Kwon, Avinash Ravichandran, Erhan Bas, Zhuowen Tu, Rahul Bhotika, Stefano Soatto

Related content
Two methods presented at CVPR achieve state-of-the-art results by imposing additional structure on the representational space.

This paper addresses the challenge of instance-wise vision-language tasks, which require free-form language to align with objects inside an image, rather than the image itself. The paper presents the X-DETR model, whose architecture has three major components: an object detector, a language encoder, and a vision-language alignment module. The vision and language streams are independent until the end, and they are aligned using an efficient dot-product operation. This simple architecture shows good accuracy and fast speeds for multiple instance-wise vision-language tasks, such as open-vocabulary object detection.

X-DETR.png
X-DETR addresses the challenge of instance-wise vision-language tasks, which require free-form language to align with objects inside an image, rather than the image itself. From "X-DETR: A versatile architecture for instance-wise vision-language tasks".

Research areas

Related content

BR, SP, Sao Paulo
Amazon launched the Generative AI Innovation Center in June 2023 to help AWS customers accelerate innovation and business success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces- generative -ai -innovation center). This Innovation Center provides opportunities to innovate in a fast-paced organization that contributes to breakthrough projects and technologies that are deployed across devices and the cloud. As a data scientist, you are proficient in designing and developing advanced generative AI solutions to solve diverse customer problems. You'll work with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will work closely with account teams and ML strategists to define the use case, and with other ML scientists and engineers on the team to design experiments and find new ways to deliver customer value. The selected person will possess technical and customer-facing skills that will enable you to be part of the AWS technical team within our solution providers ecosystem/environment as well as directly to end customers. You will be able to lead discussion with customer and partner staff and senior management. A day in the life Here at AWS, we embrace our differences. We are committed to promoting our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in more than 190 branches around the world. We have innovative benefit offerings and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon's culture of inclusion is reinforced by our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and build trust. About the team Work/life balance Our team highly values work-life balance. It's not about how many hours you spend at home or at work; it's about the flow you establish that brings energy to both parts of your life. We believe that finding the right balance between your personal and professional life is fundamental to lifelong happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own work-life balance. Mentoring and career growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and mandates and are building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one guidance and thorough but gentle code reviews. We care about your career growth and strive to assign projects based on what will help each team member become a more well-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Sao Paulo, SP, BRA
MX, DIF, Mexico City
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a Data Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow them to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. A day in the life A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Mexico City, DIF, MEX
US, CA, Palo Alto
The Amazon Search Mission Understanding (SMU) team is at the forefront of revolutionizing the online shopping experience through the Amazon search page. Our ambition extends beyond facilitating a seamless shopping journey; we are committed to creating the next generation of intelligent shopping assistants. Leveraging cutting-edge Large Language Models (LLMs), we aim to redefine navigation and decision-making in e-commerce by deeply understanding our users' shopping missions, preferences, and goals. By developing responsive and scalable solutions, we not only accomplish the shopping mission but also foster unparalleled trust among our customers. Through our advanced technology, we generate valuable insights, providing a guided navigation system into various search missions, ensuring a comprehensive and holistic shopping experience. Our dedication to continuous improvement through constant measurement and enhancement of the shopper experience is crucial, as we strategically navigate the balance between immediate results and long-term business growth. We are seeking an Applied Scientist who is not just adept in the theoretical aspects of Machine Learning (ML), Artificial Intelligence (AI), and Large Language Models (LLMs) but also possesses a pragmatic, hands-on approach to navigating the complexities of innovation. The ideal candidate will have a profound expertise in developing, deploying, and contributing to the next-generation shopping search engine, including but not limited to Retrieval-Augmented Generation (RAG) models, specifically tailored towards enhancing the Rufus application—an integral part of our mission to revolutionize shopping assistance. You will take the lead in conceptualizing, building, and launching groundbreaking models that significantly improve our understanding of and capabilities in enhancing the search experience. A successful applicant will display a comprehensive skill set across machine learning model development, implementation, and optimization. This includes a strong foundation in data management, software engineering best practices, and a keen awareness of the latest developments in distributed systems technology. We are looking for individuals who are determined, analytically rigorous, passionate about applied sciences, creative, and possess strong logical reasoning abilities. Join the Search Mission Understanding team, a group of pioneering ML scientists and engineers dedicated to building core ML models and developing the infrastructure for model innovation. As part of Amazon Search, you will experience the dynamic, innovative culture of a startup, backed by the extensive resources of Amazon.com (AMZN), a global leader in internet services. Our collaborative, customer-centric work environment spans across our offices in Palo Alto, CA, and Seattle, WA, offering a unique blend of opportunities for professional growth and innovation. Key job responsibilities Collaborate with cross-functional teams to identify requirements for ML model development, focusing on enhancing mission understanding through innovative AI techniques, including retrieval-Augmented Generation or LLM in general. Design and implement scalable ML models capable of processing and analyzing large datasets to improve search and shopping experiences. Must have a strong background in machine learning, AI, or computational sciences. Lead the management and experiments of ML models at scale, applying advanced ML techniques to optimize science solution. Serve as a technical lead and liaison for ML projects, facilitating collaboration across teams and addressing technical challenges. Requires strong leadership and communication skills, with a PhD in Computer Science, Machine Learning, or a related field. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA | Seattle, WA, USA
US, WA, Seattle
Amazon is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! Amazon Bedrock team is part of Utility Computing (UC) About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Alexa Personality Fundamentals is chartered with infusing Alexa's trustworthy, reliable, considerate, smart, and playful personality. Come join us in creating the future of personality forward AI here at Alexa. Key job responsibilities As a Data Scientist with Alexa Personality, your work will involve machine learning, Large Language Model (LLM) and other generative technologies. You will partner with engineers, applied scientists, voice designers, and quality assurance to ensure that Alexa can sing, joke, and delight our customers in every interaction. You will take a central role in defining our experimental roadmap, sourcing training data, authoring annotation criteria and building automated benchmarks to track the improvement of our Alexa's personality. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA
US, CA, Palo Alto
The Amazon Search Mission Understanding (SMU) team is at the forefront of revolutionizing the online shopping experience through the Amazon search page. Our ambition extends beyond facilitating a seamless shopping journey; we are committed to creating the next generation of intelligent shopping assistants. Leveraging cutting-edge Large Language Models (LLMs), we aim to redefine navigation and decision-making in e-commerce by deeply understanding our users' shopping missions, preferences, and goals. By developing responsive and scalable solutions, we not only accomplish the shopping mission but also foster unparalleled trust among our customers. Through our advanced technology, we generate valuable insights, providing a guided navigation system into various search missions, ensuring a comprehensive and holistic shopping experience. Our dedication to continuous improvement through constant measurement and enhancement of the shopper experience is crucial, as we strategically navigate the balance between immediate results and long-term business growth. We are seeking an Applied Scientist who is not just adept in the theoretical aspects of Machine Learning (ML), Artificial Intelligence (AI), and Large Language Models (LLMs) but also possesses a pragmatic, hands-on approach to navigating the complexities of innovation. The ideal candidate will have a profound expertise in developing, deploying, and contributing to the next-generation shopping search engine, including but not limited to Retrieval-Augmented Generation (RAG) models, specifically tailored towards enhancing the Rufus application—an integral part of our mission to revolutionize shopping assistance. You will take the lead in conceptualizing, building, and launching groundbreaking models that significantly improve our understanding of and capabilities in enhancing the search experience. A successful applicant will display a comprehensive skill set across machine learning model development, implementation, and optimization. This includes a strong foundation in data management, software engineering best practices, and a keen awareness of the latest developments in distributed systems technology. We are looking for individuals who are determined, analytically rigorous, passionate about applied sciences, creative, and possess strong logical reasoning abilities. Join the Search Mission Understanding team, a group of pioneering ML scientists and engineers dedicated to building core ML models and developing the infrastructure for model innovation. As part of Amazon Search, you will experience the dynamic, innovative culture of a startup, backed by the extensive resources of Amazon.com (AMZN), a global leader in internet services. Our collaborative, customer-centric work environment spans across our offices in Palo Alto, CA, and Seattle, WA, offering a unique blend of opportunities for professional growth and innovation. Key job responsibilities Collaborate with cross-functional teams to identify requirements for ML model development, focusing on enhancing mission understanding through innovative AI techniques, including retrieval-Augmented Generation or LLM in general. Design and implement scalable ML models capable of processing and analyzing large datasets to improve search and shopping experiences. Must have a strong background in machine learning, AI, or computational sciences. Lead the management and experiments of ML models at scale, applying advanced ML techniques to optimize science solution. Serve as a technical lead and liaison for ML projects, facilitating collaboration across teams and addressing technical challenges. Requires strong leadership and communication skills, with a PhD in Computer Science, Machine Learning, or a related field. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA | Seattle, WA, USA
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Science Manager with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. Key job responsibilities As an Applied Science Manager with the AGI team, you will lead the development of novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Bellevue
Do you enjoy solving complex problems, driving research innovation, and creating insightful models that tackle real-world challenges? Join Amazon's Modeling and Optimization team. Our science models and data-driven solutions continuously reshape Amazon global supply chain - one of the most sophisticated networks in the world. Key job responsibilities In this role, you will use science to drive measurable improvements across customer experience, network speed, cost efficiency, safety, sustainability, and capital investment returns. You will collaborate with scientists to solve complex problems and with cross-functional teams to analyze systems and drive business value. You will develop optimization, simulation, and predictive models to identify improvement opportunities. You will develop innovative, scalable solutions. You will quantify expected improvements and evaluate trade-offs between competing objectives. You will communicate model insights to stakeholders and influence positive changes in Amazon's systems and operations. A day in the life Collaboration will be key - you will collaborate with scientists to design end-to-end solutions, work with business stakeholders to simplify and streamline processes, and partner with engineers to simplify systems and enhance their performances. The focus is on driving value through scientific thinking, technical knowledge, simplification, and cross-functional teamwork. About the team Our team of scientists specializes in network modeling, optimization, algorithms, control theory, machine learning and related disciplines. Our focus is driving supply chain improvements through applied science. By analyzing data and building insightful models, we identify opportunities and influence positive change across Amazon's end-to-end systems and operations - from vendors to customers. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, MA, Boston
The Artificial General Intelligence (AGI) - Automations team is developing AI technologies to automate workflows, processes for browser automation, developers and ops teams. As part of this, we are developing services and inference engine for these automation agents, and techniques for reasoning, planning, and modeling workflows. If you are interested in a startup mode team in Amazon to build the next level of agents then come join us. Scientists in AGI - Automations will develop cutting edge multimodal LLMs to observe, model and derive insights from manual workflows to automate them. You will get to work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers. Key job responsibilities - Build automation agents by developing novel multimodal LLMs. A day in the life An Applied Scientist with the AGI team will support the science solution design, run experiments, research new algorithms, and find new ways of optimizing the customer experience.; while setting examples for the team on good science practice and standards. Besides theoretical analysis and innovation, an Applied Scientist will also work closely with talented engineers and scientists to put algorithms and models into practice. We are open to hiring candidates to work out of one of the following locations: Boston, MA, USA
US, MA, Boston
The Artificial General Intelligence (AGI) - Automations team is developing AI technologies to automate workflows, processes for browser automation, developers and ops teams. As part of this, we are developing services and inference engine for these automation agents, and techniques for reasoning, planning, and modeling workflows. If you are interested in a startup mode team in Amazon to build the next level of agents then come join us. Scientists in AGI - Automations will develop cutting edge multimodal LLMs to observe, model and derive insights from manual workflows to automate them. You will get to work in a joint scrum with engineers for rapid invention, develop cutting edge automation agent systems, and take them to launch for millions of customers. Key job responsibilities - Build automation agents by developing novel multimodal LLMs. A day in the life An Applied Scientist with the AGI team will support the science solution design, run experiments, research new algorithms, and find new ways of optimizing the customer experience.; while setting examples for the team on good science practice and standards. Besides theoretical analysis and innovation, an Applied Scientist will also work closely with talented engineers and scientists to put algorithms and models into practice. We are open to hiring candidates to work out of one of the following locations: Boston, MA, USA