2019 Amazon Research Awards recipients announcement

Earlier this year, Amazon notified grant applicants who were recipients of the 2019 Amazon Research Awards.

Earlier this spring, Amazon notified grant applicants that they were recipients of the 2019 Amazon Research Awards, a grant program that provides up to $80,000 in cash and $20,000 in AWS Promotional Credits to academic researchers investigating topics across 11 focus areas. Today, we’re publicly announcing the 51 award recipients who represent 39 universities in 10 countries. The 2019 awards averaged $72,000 in cash awards and $15,000 in AWS Promotional Credits in support of each research project. Each grant is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

The 11 focus areas of this year’s research awards are computer vision; fairness in artificial intelligence; knowledge management and data quality; machine learning algorithms and theory; natural-language processing; online advertising; operations research and optimization; personalization; robotics; search and information retrieval; and security, privacy, and abuse prevention.

Recipients can use more than 150 Amazon public data sets. Amazon encourages the publication of research results, researcher presentations at Amazon offices worldwide, and the release of related code under open-source licenses.

Each project is assigned an Amazon research contact who is available for consultation and supports the project’s progress.

“The Amazon Research Awards help fund outstanding, innovative research proposals across machine learning, robotics, operations research, and more, while helping strengthen connections between Amazon research teams, academic researchers, and their affiliated institutions,” said Swami Sivasubramanian, vice president of Amazon Machine Learning. “The breadth and depth of the research this year’s recipients will pursue is impressive and will lead to critical innovations for our customers and meaningful scientific advancements in each of the 11 focus areas.”

Grant proposals for 2020, which will be the program’s sixth year, will be accepted starting this fall. Please check back for more information this summer or send an email to be added to the 2020 Call For Proposal distribution list. Below is the list of 2019 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Pulkit AgrawalMassachusetts Institute of TechnologyContinual Reinforcement Learning
James AllanUniversity of Massachusetts AmherstExplanation of Product Facets for Conversational Search
Chris AmatoNortheastern UniversityScalable and Robust Multi-Robot Coordination through High-Level Macro-Actions
Ashis G. BanerjeeUniversity of WashingtonSparse, Deep and Persistent Visual Features Based 3D Object Detection and 6D Pose Estimation in Indoor Environments
Sven BehnkeUniversity of BonnLearning Structured Scene Modeling and Physics-Based Prediction for Manipulation
François-Xavier BriolUniversity College London & the Alan Turing InstituteTransfer Learning for Numerical Integration in Expensive Machine Learning Systems
Flavio du Pin CalmonHarvard UniversityBuilding the Foundations of Fair Machine Learning: From Information Theory to Federated Algorithms
Luca CarloneMassachusetts Institute of TechnologyMetric-Semantic SLAM for Long-Term Multi-Robot Deployment
Shayok ChakrabortyFlorida State UniversityDeep Active Learning with Relative Label Feedback
Kai-Wei ChangUniversity of California Los AngelesLearning Robust Contextual Language Encoders at Scale
Margarita ChliETH ZurichSemantic-Aware Cloud-Aided Aerial Navigation for Drone Delivery
Jeff DaltonUniversity of GlasgowKnowledge-Grounded Conversational Product Information Seeking
N. Lance DowningStanford UniversityDeepStroke: Improving Stroke Diagnosis with Deep Learning on NIH Stroke Scale Assessments
Luciana FerrerComputer Science Institute (ICC), UBA-CONICETRepresentation Learning for Sound Understanding
Alexander GammermanRoyal Holloway, University of LondonConformal Martingales for Change-Point Detection
Graeme GangeMonash UniversityRobust Prioritised Planning for Multi-Agent Pathfinding
Itai GurvichCornell UniversityDynamic Resource Allocation to Heterogeneous Requests: Near Optimal, Computationally Light Policies
Kris HauserUniversity of Illinois Urbana-ChampaignRobotic Packing of Novel and Non-Rigid Objects with Visuotactile Modeling
Daqing HeUniversity of PittsburghTransferable, Controllable, Applicable Keyphrase Generation
Jason HongCarnegie Mellon UniversityDesigning Alternative Representations of Confusion Matrices to Evaluate Public Perceptions of Fairness in Machine Learning
Wendy JuCornell TechEnabling Machines to Recognize and Repair Errors in Interaction
Sertac KaramanMassachusetts Institute of TechnologyLearning New Environments with a Tour: Depth and Pose Estimation through Informative Control Actions
Ioannis KaramouzasClemson UniversityLearning Efficient Multi-Robot Navigation from Human Crowd Data
Aryeh KontorovichBen-Gurion University of the NegevAdvanced Proximity-Based Learning Toolkit for SageMaker
Oliver KroemerCarnegie Mellon UniversityRobust Manipulation Strategies for Delta-Robot Arrays
Beibei LiCarnegie Mellon UniversityAI Agent for Targeted Promotion
Changliu LiuCarnegie Mellon UniversityHierarchical Motion Planning for Efficient and Provably Safe Human-Robot Interactions
Anirudha MajumdarPrinceton UniversityForce-Closure Nets: Manipulating Objects with Provable Guarantees on Generalization
Karthik NarasimhanPrinceton UniversityTowards Deeper, Broader and Human-Like Conversational Agents
Joseph P. NearUniversity of VermontProvable Fairness for Deep Learning via Automatic Differentiation
Priyadarshini PandaYale UniversityAdversarial Robustness with Efficiency-Driven Optimization of Deep Neural Networks
Guilherme Augsto Silva PereiraWest Virginia UniversityParallel and Cloud Computing for Long-Term Robotics
Carlo PinciroliWorcester Polytechnic InstituteAn Immersive Interface for Multi-User Supervision of Multi-Robot Operations
Ingmar PosnerUniversity of OxfordCompositional Deep Generative Models for Real-World Robot Perception and Manipulation
Amanda ProrokUniversity of CambridgeLearning Explicit Communication for Multi-Robot Path Planning
Sebastian RisiIT University of CopenhagenContinually Learning Machines for Industrial Automation
Alessandro RizzoPolitecnico di TorinoFrom Shortest to Safest Path Navigation: An AI-Powered Framework for Risk-Aware Autonomous Navigation of UASes
Nicolas RojasImperial College LondonMechanical intelligence for in-hand manipulation
Daniela RusMassachusetts Institute of TechnologySeries Elastic Magnetically Geared Robotic Actuators
Sanjay SarmaMassachusetts Institute of TechnologyMulti-modal Sensing for Material ID in Robotic Applications
Alex SchwingUniversity of Illinois Urbana-ChampaignSeeing the Unseen: Temporal Amodal Instance Level Video Object Segmentation
Roland SiegwartETH ZürichAerial Manipulation with an Omnidirectional Flying Platform
Niko SuenderhaufQueensland University of Technology (QUT)Learning Robotic Navigation and Interaction from Object-based Semantic Maps
Chenhao TanUniversity of Colorado at BoulderActively Soliciting Human Explanations to Correct Biases in NLP Models
Jian TangHEC Montreal: Mila-Quebec AI InstituteDeep Active Learning for Graph Neural Networks
Marynel VázquezYale UniversityImproving Social Robot Navigation via Group Interaction Awareness
Soroush VosoughiDartmouth CollegeProtecting Online Anonymity Through Linguistic Style Transfer
Richard M. VoylesPurdue UniversityFramework for One-Shot Learning of Contact-Intensive Tasks Through Coaching
May Dongmei WangGeorgia Institute of TechnologyLearning to Unlearn Biases in Recommendation Models
James WangThe Pennsylvania State UniversityAdvancing Automated Recognition of Emotion in the Wild
Xinyu XingThe Pennsylvania State UniversityFine-grained Malware Classification using Coarse-grained Labels

Related content

US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA