2019 Amazon Research Awards recipients announcement

Earlier this year, Amazon notified grant applicants who were recipients of the 2019 Amazon Research Awards.

Earlier this spring, Amazon notified grant applicants that they were recipients of the 2019 Amazon Research Awards, a grant program that provides up to $80,000 in cash and $20,000 in AWS Promotional Credits to academic researchers investigating topics across 11 focus areas. Today, we’re publicly announcing the 51 award recipients who represent 39 universities in 10 countries. The 2019 awards averaged $72,000 in cash awards and $15,000 in AWS Promotional Credits in support of each research project. Each grant is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

The 11 focus areas of this year’s research awards are computer vision; fairness in artificial intelligence; knowledge management and data quality; machine learning algorithms and theory; natural-language processing; online advertising; operations research and optimization; personalization; robotics; search and information retrieval; and security, privacy, and abuse prevention.

Recipients can use more than 150 Amazon public data sets. Amazon encourages the publication of research results, researcher presentations at Amazon offices worldwide, and the release of related code under open-source licenses.

Each project is assigned an Amazon research contact who is available for consultation and supports the project’s progress.

“The Amazon Research Awards help fund outstanding, innovative research proposals across machine learning, robotics, operations research, and more, while helping strengthen connections between Amazon research teams, academic researchers, and their affiliated institutions,” said Swami Sivasubramanian, vice president of Amazon Machine Learning. “The breadth and depth of the research this year’s recipients will pursue is impressive and will lead to critical innovations for our customers and meaningful scientific advancements in each of the 11 focus areas.”

Grant proposals for 2020, which will be the program’s sixth year, will be accepted starting this fall. Please check back for more information this summer or send an email to be added to the 2020 Call For Proposal distribution list. Below is the list of 2019 award recipients, presented in alphabetical order.

Recipient

University

Research title

Pulkit Agrawal

Massachusetts Institute of Technology

Continual Reinforcement Learning

James Allan

University of Massachusetts Amherst

Explanation of Product Facets for Conversational Search

Chris Amato

Northeastern University

Scalable and Robust Multi-Robot Coordination through High-Level Macro-Actions

Ashis G. Banerjee

University of Washington

Sparse, Deep and Persistent Visual Features Based 3D Object Detection and 6D Pose Estimation in Indoor Environments

Sven Behnke

University of Bonn

Learning Structured Scene Modeling and Physics-Based Prediction for Manipulation

François-Xavier Briol

University College London & the Alan Turing Institute

Transfer Learning for Numerical Integration in Expensive Machine Learning Systems

Flavio du Pin Calmon

Harvard University

Building the Foundations of Fair Machine Learning: From Information Theory to Federated Algorithms

Luca Carlone

Massachusetts Institute of Technology

Metric-Semantic SLAM for Long-Term Multi-Robot Deployment

Shayok Chakraborty

Florida State University

Deep Active Learning with Relative Label Feedback

Kai-Wei Chang

University of California Los Angeles

Learning Robust Contextual Language Encoders at Scale

Margarita Chli

ETH Zurich

Semantic-Aware Cloud-Aided Aerial Navigation for Drone Delivery

Jeff Dalton

University of Glasgow

Knowledge-Grounded Conversational Product Information Seeking

N. Lance Downing

Stanford University

DeepStroke: Improving Stroke Diagnosis with Deep Learning on NIH Stroke Scale Assessments

Luciana Ferrer

Computer Science Institute (ICC), UBA-CONICET

Representation Learning for Sound Understanding

Alexander Gammerman

Royal Holloway, University of London

Conformal Martingales for Change-Point Detection

Graeme Gange

Monash University

Robust Prioritised Planning for Multi-Agent Pathfinding

Itai Gurvich

Cornell University

Dynamic Resource Allocation to Heterogeneous Requests: Near Optimal, Computationally Light Policies

Kris Hauser

University of Illinois Urbana-Champaign

Robotic Packing of Novel and Non-Rigid Objects with Visuotactile Modeling

Daqing He

University of Pittsburgh

Transferable, Controllable, Applicable Keyphrase Generation

Jason Hong

Carnegie Mellon University

Designing Alternative Representations of Confusion Matrices to Evaluate Public Perceptions of Fairness in Machine Learning

Wendy Ju

Cornell Tech

Enabling Machines to Recognize and Repair Errors in Interaction

Sertac Karaman

Massachusetts Institute of Technology

Learning New Environments with a Tour: Depth and Pose Estimation through Informative Control Actions

Ioannis Karamouzas

Clemson University

Learning Efficient Multi-Robot Navigation from Human Crowd Data

Aryeh Kontorovich

Ben-Gurion University of the Negev

Advanced Proximity-Based Learning Toolkit for SageMaker

Oliver Kroemer

Carnegie Mellon University

Robust Manipulation Strategies for Delta-Robot Arrays

Beibei Li

Carnegie Mellon University

AI Agent for Targeted Promotion

Changliu Liu

Carnegie Mellon University

Hierarchical Motion Planning for Efficient and Provably Safe Human-Robot Interactions

Anirudha Majumdar

Princeton University

Force-Closure Nets: Manipulating Objects with Provable Guarantees on Generalization

Karthik Narasimhan

Princeton University

Towards Deeper, Broader and Human-Like Conversational Agents

Joseph P. Near

University of Vermont

Provable Fairness for Deep Learning via Automatic Differentiation

Priyadarshini Panda

Yale University

Adversarial Robustness with Efficiency-Driven Optimization of Deep Neural Networks

Guilherme Augsto Silva Pereira

West Virginia University

Parallel and Cloud Computing for Long-Term Robotics

Carlo Pinciroli

Worcester Polytechnic Institute

An Immersive Interface for Multi-User Supervision of Multi-Robot Operations

Ingmar Posner

University of Oxford

Compositional Deep Generative Models for Real-World Robot Perception and Manipulation

Amanda Prorok

University of Cambridge

Learning Explicit Communication for Multi-Robot Path Planning

Sebastian Risi

IT University of Copenhagen

Continually Learning Machines for Industrial Automation

Alessandro Rizzo

Politecnico di Torino

From Shortest to Safest Path Navigation: An AI-Powered Framework for Risk-Aware Autonomous Navigation of UASes

Nicolas Rojas

Imperial College London

Mechanical intelligence for in-hand manipulation

Daniela Rus

Massachusetts Institute of Technology

Series Elastic Magnetically Geared Robotic Actuators

Sanjay Sarma

Massachusetts Institute of Technology

Multi-modal Sensing for Material ID in Robotic Applications

Alex Schwing

University of Illinois Urbana-Champaign

Seeing the Unseen: Temporal Amodal Instance Level Video Object Segmentation

Roland Siegwart

ETH Zürich

Aerial Manipulation with an Omnidirectional Flying Platform

Niko Suenderhauf

Queensland University of Technology (QUT)

Learning Robotic Navigation and Interaction from Object-based Semantic Maps

Chenhao Tan

University of Colorado at Boulder

Actively Soliciting Human Explanations to Correct Biases in NLP Models

Jian Tang

HEC Montreal: Mila-Quebec AI Institute

Deep Active Learning for Graph Neural Networks

Marynel Vázquez

Yale University

Improving Social Robot Navigation via Group Interaction Awareness

Soroush Vosoughi

Dartmouth College

Protecting Online Anonymity Through Linguistic Style Transfer

Richard M. Voyles

Purdue University

Framework for One-Shot Learning of Contact-Intensive Tasks Through Coaching

May Dongmei Wang

Georgia Institute of Technology

Learning to Unlearn Biases in Recommendation Models

James Wang

The Pennsylvania State University

Advancing Automated Recognition of Emotion in the Wild

Xinyu Xing

The Pennsylvania State University

Fine-grained Malware Classification using Coarse-grained Labels

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.