2019 Amazon Research Awards recipients announcement

Earlier this year, Amazon notified grant applicants who were recipients of the 2019 Amazon Research Awards.

Earlier this spring, Amazon notified grant applicants that they were recipients of the 2019 Amazon Research Awards, a grant program that provides up to $80,000 in cash and $20,000 in AWS Promotional Credits to academic researchers investigating topics across 11 focus areas. Today, we’re publicly announcing the 51 award recipients who represent 39 universities in 10 countries. The 2019 awards averaged $72,000 in cash awards and $15,000 in AWS Promotional Credits in support of each research project. Each grant is intended to support the work of one to two graduate students or postdoctoral students for one year, under the supervision of a faculty member.

The 11 focus areas of this year’s research awards are computer vision; fairness in artificial intelligence; knowledge management and data quality; machine learning algorithms and theory; natural-language processing; online advertising; operations research and optimization; personalization; robotics; search and information retrieval; and security, privacy, and abuse prevention.

Recipients can use more than 150 Amazon public data sets. Amazon encourages the publication of research results, researcher presentations at Amazon offices worldwide, and the release of related code under open-source licenses.

Each project is assigned an Amazon research contact who is available for consultation and supports the project’s progress.

“The Amazon Research Awards help fund outstanding, innovative research proposals across machine learning, robotics, operations research, and more, while helping strengthen connections between Amazon research teams, academic researchers, and their affiliated institutions,” said Swami Sivasubramanian, vice president of Amazon Machine Learning. “The breadth and depth of the research this year’s recipients will pursue is impressive and will lead to critical innovations for our customers and meaningful scientific advancements in each of the 11 focus areas.”

Grant proposals for 2020, which will be the program’s sixth year, will be accepted starting this fall. Please check back for more information this summer or send an email to be added to the 2020 Call For Proposal distribution list. Below is the list of 2019 award recipients, presented in alphabetical order.

RecipientUniversityResearch title
Pulkit AgrawalMassachusetts Institute of TechnologyContinual Reinforcement Learning
James AllanUniversity of Massachusetts AmherstExplanation of Product Facets for Conversational Search
Chris AmatoNortheastern UniversityScalable and Robust Multi-Robot Coordination through High-Level Macro-Actions
Ashis G. BanerjeeUniversity of WashingtonSparse, Deep and Persistent Visual Features Based 3D Object Detection and 6D Pose Estimation in Indoor Environments
Sven BehnkeUniversity of BonnLearning Structured Scene Modeling and Physics-Based Prediction for Manipulation
François-Xavier BriolUniversity College London & the Alan Turing InstituteTransfer Learning for Numerical Integration in Expensive Machine Learning Systems
Flavio du Pin CalmonHarvard UniversityBuilding the Foundations of Fair Machine Learning: From Information Theory to Federated Algorithms
Luca CarloneMassachusetts Institute of TechnologyMetric-Semantic SLAM for Long-Term Multi-Robot Deployment
Shayok ChakrabortyFlorida State UniversityDeep Active Learning with Relative Label Feedback
Kai-Wei ChangUniversity of California Los AngelesLearning Robust Contextual Language Encoders at Scale
Margarita ChliETH ZurichSemantic-Aware Cloud-Aided Aerial Navigation for Drone Delivery
Jeff DaltonUniversity of GlasgowKnowledge-Grounded Conversational Product Information Seeking
N. Lance DowningStanford UniversityDeepStroke: Improving Stroke Diagnosis with Deep Learning on NIH Stroke Scale Assessments
Luciana FerrerComputer Science Institute (ICC), UBA-CONICETRepresentation Learning for Sound Understanding
Alexander GammermanRoyal Holloway, University of LondonConformal Martingales for Change-Point Detection
Graeme GangeMonash UniversityRobust Prioritised Planning for Multi-Agent Pathfinding
Itai GurvichCornell UniversityDynamic Resource Allocation to Heterogeneous Requests: Near Optimal, Computationally Light Policies
Kris HauserUniversity of Illinois Urbana-ChampaignRobotic Packing of Novel and Non-Rigid Objects with Visuotactile Modeling
Daqing HeUniversity of PittsburghTransferable, Controllable, Applicable Keyphrase Generation
Jason HongCarnegie Mellon UniversityDesigning Alternative Representations of Confusion Matrices to Evaluate Public Perceptions of Fairness in Machine Learning
Wendy JuCornell TechEnabling Machines to Recognize and Repair Errors in Interaction
Sertac KaramanMassachusetts Institute of TechnologyLearning New Environments with a Tour: Depth and Pose Estimation through Informative Control Actions
Ioannis KaramouzasClemson UniversityLearning Efficient Multi-Robot Navigation from Human Crowd Data
Aryeh KontorovichBen-Gurion University of the NegevAdvanced Proximity-Based Learning Toolkit for SageMaker
Oliver KroemerCarnegie Mellon UniversityRobust Manipulation Strategies for Delta-Robot Arrays
Beibei LiCarnegie Mellon UniversityAI Agent for Targeted Promotion
Changliu LiuCarnegie Mellon UniversityHierarchical Motion Planning for Efficient and Provably Safe Human-Robot Interactions
Anirudha MajumdarPrinceton UniversityForce-Closure Nets: Manipulating Objects with Provable Guarantees on Generalization
Karthik NarasimhanPrinceton UniversityTowards Deeper, Broader and Human-Like Conversational Agents
Joseph P. NearUniversity of VermontProvable Fairness for Deep Learning via Automatic Differentiation
Priyadarshini PandaYale UniversityAdversarial Robustness with Efficiency-Driven Optimization of Deep Neural Networks
Guilherme Augsto Silva PereiraWest Virginia UniversityParallel and Cloud Computing for Long-Term Robotics
Carlo PinciroliWorcester Polytechnic InstituteAn Immersive Interface for Multi-User Supervision of Multi-Robot Operations
Ingmar PosnerUniversity of OxfordCompositional Deep Generative Models for Real-World Robot Perception and Manipulation
Amanda ProrokUniversity of CambridgeLearning Explicit Communication for Multi-Robot Path Planning
Sebastian RisiIT University of CopenhagenContinually Learning Machines for Industrial Automation
Alessandro RizzoPolitecnico di TorinoFrom Shortest to Safest Path Navigation: An AI-Powered Framework for Risk-Aware Autonomous Navigation of UASes
Nicolas RojasImperial College LondonMechanical intelligence for in-hand manipulation
Daniela RusMassachusetts Institute of TechnologySeries Elastic Magnetically Geared Robotic Actuators
Sanjay SarmaMassachusetts Institute of TechnologyMulti-modal Sensing for Material ID in Robotic Applications
Alex SchwingUniversity of Illinois Urbana-ChampaignSeeing the Unseen: Temporal Amodal Instance Level Video Object Segmentation
Roland SiegwartETH ZürichAerial Manipulation with an Omnidirectional Flying Platform
Niko SuenderhaufQueensland University of Technology (QUT)Learning Robotic Navigation and Interaction from Object-based Semantic Maps
Chenhao TanUniversity of Colorado at BoulderActively Soliciting Human Explanations to Correct Biases in NLP Models
Jian TangHEC Montreal: Mila-Quebec AI InstituteDeep Active Learning for Graph Neural Networks
Marynel VázquezYale UniversityImproving Social Robot Navigation via Group Interaction Awareness
Soroush VosoughiDartmouth CollegeProtecting Online Anonymity Through Linguistic Style Transfer
Richard M. VoylesPurdue UniversityFramework for One-Shot Learning of Contact-Intensive Tasks Through Coaching
May Dongmei WangGeorgia Institute of TechnologyLearning to Unlearn Biases in Recommendation Models
James WangThe Pennsylvania State UniversityAdvancing Automated Recognition of Emotion in the Wild
Xinyu XingThe Pennsylvania State UniversityFine-grained Malware Classification using Coarse-grained Labels

Related content

US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Some knowledge of econometrics, as well as basic familiarity with Stata or R is necessary, and experience with SQL, Hadoop, Spark and Python would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, artificial intelligence, human-robot interaction, optimization and more.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, MA, Boston
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics, a wholly owned subsidiary of Amazon.com, empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas. AR is seeking uniquely talented and motivated data scientists to join our Global Services and Support (GSS) Tools Team. GSS Tools focuses on improving the supportability of the Amazon Robotics solutions through automation, with the explicit goal of simplifying issue resolution for our global network of Fulfillment Centers. The candidate will work closely with software engineers, Fulfillment Center operation teams, system engineers, and product managers in the development, qualification, documentation, and deployment of new - as well as enhancements to existing - operational models, metrics, and data driven dashboards. As such, this individual must possess the technical aptitude to pick-up new BI tools and programming languages to interface with different data access layers for metric computation, data mining, and data modeling. This role is a 6 month co-op to join AR full time (40 hours/week) from July – December 2023. The Co-op will be responsible for: Diving deep into operational data and metrics to identify and communicate trends used to drive development of new tools for supportability Translating operational metrics into functional requirements for BI-tools, models, and reporting Collaborating with cross functional teams to automate AR problem detection and diagnostics