Preskill wins prize for work on learning and quantum computing

Caltech professor and Amazon Scholar John Preskill wins Bell Prize for applying both classical and quantum computing to the problem of learning from quantum experiments.

John Preskill
John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar.
Credit: Caltech / Lance Hayashida

In August 2024, at the 10th International Conference on Quantum Information and Quantum Control, John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar, will receive the John Stewart Bell Prize for Research on Fundamental Issues in Quantum Mechanics and Their Applications. The prize is named for the European Organization for Nuclear Research (CERN) physicist John Bell, who showed how to prove the existence of quantum entanglement, or strong correlations between the physical states of quantum systems, even when they’re separated by great distances.

The prize announcement cites Preskill’s work “at the interface of efficient learning and processing of quantum information in quantum computation”, work that explores both classical and quantum techniques for using machine learning to deepen our understanding quantum systems. Preskill recently took some time to explain his prize-winning work to Amazon Science.

  1. Q. 

    Can you describe the work that won the prize?

    A. 

    You could put it in two categories, which we could call learning about the quantum world using classical machines and using quantum machines. People have quantum computers now with hundreds of quantum bits, or qubits, and completely characterizing the state of a quantum computer with hundreds of qubits is beyond our ability, because that complete description grows exponentially with the number of qubits.

    If we're going to make progress, we have to have some way of translating that quantum information to classical information that we can understand. So part of our work — and this was with two brilliant collaborators, Robert Huang, a student, and Richard Kueng, a postdoc — was a way of translating this very complex quantum system to a succinct classical description.

    What we showed is that there's a way of doing a relatively modest number of experiments that gives you a description of the quantum system from which you can predict very many properties — a lot more properties than the number of measurements that you had to make. We call this description a “classical shadow”.

    An irregular polyhedron suspended in midair, with shadows projected onto each of three orthogonal surfaces: one shadow is a triangle, one a square, and the third a circle.
    Computing "classical shadows" is analogous to projecting a 3-D object into two dimensions along multiple axes.

    Let's say there's a three-dimensional object, and we're trying to understand its geometry. We can take snapshots of it from different directions, which project it on two dimensions. This is kind of like that only on steroids, because the quantum system lives in some unimaginably large dimension, and we're projecting it down to a little bit of information. What we showed is that you don't need so many of these snapshots to be able to predict a lot of things that a physicist would typically be interested in.

    We'd like to use the data that we get from quantum experiments and generalize to predict what we'll see when we look at related quantum systems or when we look at the same quantum system in a different way. And you know, AI is everywhere these days, and a lot of people are thinking about applying machine learning to understanding quantum systems. But it's mostly very heuristic: people try different things, and they hope that gives them the ability to generalize and make good predictions.

    From left to right, three phases in the process of learning from quantum systems: at left is a depiction of atoms in a sphere, labeled "unknown quantum system"; in the middle is a rendering of binary values on computer screen, labeled "efficient classical representation"; and at right is the same computer screen, displaying different-colored probability distributions, labeled "predict properties".
    The computational pipeline for learning about quantum systems with classical computers.

    What we wanted to do is to give rigorous performance guarantees that you don't need that many of these snapshots in order to generalize with a small error. And we were able to prove that in some settings.

    When it comes to learning with quantum machines, now let's do something different. Let's grab some quantum data — maybe we produce it on a quantum computer, or we have a sensing network that collected some photons from somewhere — and store that in a quantum memory. We don’t just measure it and put it in a classical memory; we store it in a quantum memory, and then we do a quantum computation on that data. And finally, at the end of the computation, we get a classical answer, because at the end of a quantum computation, you always do.

    What we were able to show is that, for some properties of the quantum system that you might want to know, it's vastly more efficient to process with a quantum computer than a classical computer.

  2. Q. 

    In the case of the “classical shadows”, do you have to reset the system after each measurement?

    A. 

    I'm imagining a scenario in which I have access to many identically prepared copies. Now, I might have prepared them with a quantum computer, and I went through the same steps of the computation each time. Or maybe there was some experiment I did in the lab, which I can repeat over and over again. The main point of our work was, you don't need as many copies as you thought you might. Technically, the number of predictions we can make with some fixed accuracy, based on measuring the same state many times, is exponential in the number of copies that we measure.

  3. Q. 

    Do you have to know what questions you want to ask before you start making measurements?

    A. 

    We have a slogan, which is “Measure first, ask questions later”, because it turns out that no, you don't need to know what properties you're going to want to learn at the time that you make the measurements. And as a result, the measurements that we require for creating a classical shadow really are experimentally feasible today, because all you have to do is measure the individual qubits.

    Related content
    The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

    The trick is you measure them in a random basis. There are different ways of looking at a qubit. You can, so to speak, look at it straight up and down or horizontally or back and forth. So there are three types of measurements we consider, and for all the qubits, we randomly choose to measure in one of those three ways.

    There's some power that comes from the randomness there. Later, you can say, Okay, I want to use that data and predict something like a correlation function for a clump of qubits here and a clump there, or maybe the expectation value of the energy of some quantum system, and just by processing that randomized data, I can make that prediction.

  4. Q. 

    What’s the setup in the quantum learning context?

    A. 

    The quantum setting is you can take two copies at once, store them in a quantum memory, and then do a computation across the two copies. We call that an entangled or entangling measurement of the two copies. And that's where the power comes from. When you do an entangling measurement on two copies at a time, that enables us to, in some cases, vastly reduce the number of experiments we need to do to predict the properties.

    Of course, in a real computer, there's noise, which is always a factor. But if everything's noiseless, then for the particular case that we studied, the number of measurements that suffice when you do these entangling measurements across the copies is a constant. It doesn't depend on how large the system is. But if you measure one copy at a time, the theorem says that to get that same measurement accuracy, you'd have to measure a number of copies which is exponential in the number of qubits.

  5. Q. 

    What applications could this have?

    A. 

    What we imagine doing eventually, which I think will be very empowering, is a new kind of quantum sensing. If we are observing light from some source, what do we do now? We count photons, typically: with a camera, you've got pixels that flash when they get hit by photons.

    Related content
    Research on “super-Grover” optimization, quantum algorithms for topological data analysis, and simulation of physical systems displays the range of Amazon’s interests in quantum computing.

    If there's a state of many photons that has come from some source — maybe you’ve got telescopes, and you're looking at something coming in from space — there's a lot of information, at least in principle, in the quantum correlations among those photons. And we miss that if we're just counting photons. You're throwing away a tremendous amount of information in that many-photon state.

    What we can imagine, when we have the technology to do it, is our telescopes won't just count photons. They'll collect this many-photon state and store it in a quantum memory, including multiple images, and then we can come along and do this collective measurement on the multiple copies. And we'll be able to see things in that signal that we would just miss if we do things the conventional way, measuring one copy at a time.

  6. Q. 

    One last question: the prize is named for John Bell, who proposed an experiment to prove that measurements on entangled particles really do depend on each other, even if the particles are separated by enormous distances. Does your work relate to Bell’s in some way?

    A. 

    The charge to the committee that selects the awardee is to identify research that advances the foundations of quantum theory. And of course, Bell did that by formulating Bell inequalities showing that quantum entanglement enables us to do things that we couldn't do without quantum entanglement. That's the point of experimental demonstrations of violations of Bell's inequality.

    Part of Bell's legacy is that quantum entanglement is a resource that, if we know how to make use of it, enables us to do things we couldn't otherwise do — more-powerful computations, new kinds of measurements, new kinds of communication. So I think, at least in that sense, the work we've been talking about is very much following in Bell's footsteps — as is the whole field of quantum computing, in a way. Because I think the power of quantum computers really comes from the feature that in the middle of a quantum computation, you're dealing with a very highly entangled state of many qubits that we don't know how to represent classically.

Research areas

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.