Preskill wins prize for work on learning and quantum computing

Caltech professor and Amazon Scholar John Preskill wins Bell Prize for applying both classical and quantum computing to the problem of learning from quantum experiments.

John Preskill
John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar.
Credit: Caltech / Lance Hayashida

In August 2024, at the 10th International Conference on Quantum Information and Quantum Control, John Preskill, the Richard P. Feynman Professor of Theoretical Physics at the California Institute of Technology and an Amazon Scholar, will receive the John Stewart Bell Prize for Research on Fundamental Issues in Quantum Mechanics and Their Applications. The prize is named for the European Organization for Nuclear Research (CERN) physicist John Bell, who showed how to prove the existence of quantum entanglement, or strong correlations between the physical states of quantum systems, even when they’re separated by great distances.

The prize announcement cites Preskill’s work “at the interface of efficient learning and processing of quantum information in quantum computation”, work that explores both classical and quantum techniques for using machine learning to deepen our understanding quantum systems. Preskill recently took some time to explain his prize-winning work to Amazon Science.

  1. Q. 

    Can you describe the work that won the prize?

    A. 

    You could put it in two categories, which we could call learning about the quantum world using classical machines and using quantum machines. People have quantum computers now with hundreds of quantum bits, or qubits, and completely characterizing the state of a quantum computer with hundreds of qubits is beyond our ability, because that complete description grows exponentially with the number of qubits.

    If we're going to make progress, we have to have some way of translating that quantum information to classical information that we can understand. So part of our work — and this was with two brilliant collaborators, Robert Huang, a student, and Richard Kueng, a postdoc — was a way of translating this very complex quantum system to a succinct classical description.

    What we showed is that there's a way of doing a relatively modest number of experiments that gives you a description of the quantum system from which you can predict very many properties — a lot more properties than the number of measurements that you had to make. We call this description a “classical shadow”.

    An irregular polyhedron suspended in midair, with shadows projected onto each of three orthogonal surfaces: one shadow is a triangle, one a square, and the third a circle.
    Computing "classical shadows" is analogous to projecting a 3-D object into two dimensions along multiple axes.

    Let's say there's a three-dimensional object, and we're trying to understand its geometry. We can take snapshots of it from different directions, which project it on two dimensions. This is kind of like that only on steroids, because the quantum system lives in some unimaginably large dimension, and we're projecting it down to a little bit of information. What we showed is that you don't need so many of these snapshots to be able to predict a lot of things that a physicist would typically be interested in.

    We'd like to use the data that we get from quantum experiments and generalize to predict what we'll see when we look at related quantum systems or when we look at the same quantum system in a different way. And you know, AI is everywhere these days, and a lot of people are thinking about applying machine learning to understanding quantum systems. But it's mostly very heuristic: people try different things, and they hope that gives them the ability to generalize and make good predictions.

    From left to right, three phases in the process of learning from quantum systems: at left is a depiction of atoms in a sphere, labeled "unknown quantum system"; in the middle is a rendering of binary values on computer screen, labeled "efficient classical representation"; and at right is the same computer screen, displaying different-colored probability distributions, labeled "predict properties".
    The computational pipeline for learning about quantum systems with classical computers.

    What we wanted to do is to give rigorous performance guarantees that you don't need that many of these snapshots in order to generalize with a small error. And we were able to prove that in some settings.

    When it comes to learning with quantum machines, now let's do something different. Let's grab some quantum data — maybe we produce it on a quantum computer, or we have a sensing network that collected some photons from somewhere — and store that in a quantum memory. We don’t just measure it and put it in a classical memory; we store it in a quantum memory, and then we do a quantum computation on that data. And finally, at the end of the computation, we get a classical answer, because at the end of a quantum computation, you always do.

    What we were able to show is that, for some properties of the quantum system that you might want to know, it's vastly more efficient to process with a quantum computer than a classical computer.

  2. Q. 

    In the case of the “classical shadows”, do you have to reset the system after each measurement?

    A. 

    I'm imagining a scenario in which I have access to many identically prepared copies. Now, I might have prepared them with a quantum computer, and I went through the same steps of the computation each time. Or maybe there was some experiment I did in the lab, which I can repeat over and over again. The main point of our work was, you don't need as many copies as you thought you might. Technically, the number of predictions we can make with some fixed accuracy, based on measuring the same state many times, is exponential in the number of copies that we measure.

  3. Q. 

    Do you have to know what questions you want to ask before you start making measurements?

    A. 

    We have a slogan, which is “Measure first, ask questions later”, because it turns out that no, you don't need to know what properties you're going to want to learn at the time that you make the measurements. And as a result, the measurements that we require for creating a classical shadow really are experimentally feasible today, because all you have to do is measure the individual qubits.

    Related content
    The noted physicist answers 3 questions about the challenges of quantum computing and why he’s excited to be part of a technology development project.

    The trick is you measure them in a random basis. There are different ways of looking at a qubit. You can, so to speak, look at it straight up and down or horizontally or back and forth. So there are three types of measurements we consider, and for all the qubits, we randomly choose to measure in one of those three ways.

    There's some power that comes from the randomness there. Later, you can say, Okay, I want to use that data and predict something like a correlation function for a clump of qubits here and a clump there, or maybe the expectation value of the energy of some quantum system, and just by processing that randomized data, I can make that prediction.

  4. Q. 

    What’s the setup in the quantum learning context?

    A. 

    The quantum setting is you can take two copies at once, store them in a quantum memory, and then do a computation across the two copies. We call that an entangled or entangling measurement of the two copies. And that's where the power comes from. When you do an entangling measurement on two copies at a time, that enables us to, in some cases, vastly reduce the number of experiments we need to do to predict the properties.

    Of course, in a real computer, there's noise, which is always a factor. But if everything's noiseless, then for the particular case that we studied, the number of measurements that suffice when you do these entangling measurements across the copies is a constant. It doesn't depend on how large the system is. But if you measure one copy at a time, the theorem says that to get that same measurement accuracy, you'd have to measure a number of copies which is exponential in the number of qubits.

  5. Q. 

    What applications could this have?

    A. 

    What we imagine doing eventually, which I think will be very empowering, is a new kind of quantum sensing. If we are observing light from some source, what do we do now? We count photons, typically: with a camera, you've got pixels that flash when they get hit by photons.

    Related content
    Research on “super-Grover” optimization, quantum algorithms for topological data analysis, and simulation of physical systems displays the range of Amazon’s interests in quantum computing.

    If there's a state of many photons that has come from some source — maybe you’ve got telescopes, and you're looking at something coming in from space — there's a lot of information, at least in principle, in the quantum correlations among those photons. And we miss that if we're just counting photons. You're throwing away a tremendous amount of information in that many-photon state.

    What we can imagine, when we have the technology to do it, is our telescopes won't just count photons. They'll collect this many-photon state and store it in a quantum memory, including multiple images, and then we can come along and do this collective measurement on the multiple copies. And we'll be able to see things in that signal that we would just miss if we do things the conventional way, measuring one copy at a time.

  6. Q. 

    One last question: the prize is named for John Bell, who proposed an experiment to prove that measurements on entangled particles really do depend on each other, even if the particles are separated by enormous distances. Does your work relate to Bell’s in some way?

    A. 

    The charge to the committee that selects the awardee is to identify research that advances the foundations of quantum theory. And of course, Bell did that by formulating Bell inequalities showing that quantum entanglement enables us to do things that we couldn't do without quantum entanglement. That's the point of experimental demonstrations of violations of Bell's inequality.

    Part of Bell's legacy is that quantum entanglement is a resource that, if we know how to make use of it, enables us to do things we couldn't otherwise do — more-powerful computations, new kinds of measurements, new kinds of communication. So I think, at least in that sense, the work we've been talking about is very much following in Bell's footsteps — as is the whole field of quantum computing, in a way. Because I think the power of quantum computers really comes from the feature that in the middle of a quantum computation, you're dealing with a very highly entangled state of many qubits that we don't know how to represent classically.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!