From structured search to learning-to-rank-and-retrieve

Using reinforcement learning improves candidate selection and ranking for search, ad platforms, and recommender systems.

Most modern search applications, ad platforms, and recommender systems share a similar multitier information retrieval (IR) architecture with (at a minimum) a candidate selection or retrieval phase and a candidate ordering or ranking phase. Given a query and a context, the retrieval phase reduces the space of possible candidates from millions, sometimes billions, to (typically) hundreds or less. The ranking phase then fine-tunes the ordering of candidates to be presented to customers. This approach is both flexible and scalable.

Search funnel.png
A typical search funnel, from query understanding to displaying results.

At Amazon Music, we have previously improved our ranking of the top-k candidates by applying learning-to-rank (LTR) models, which learn from customer feedback or actions (clicks, likes, adding to favorites, playback, etc.). We combine input signals from the query, context, customer preferences, and candidate features to train the models.

Related content
Models adapted from information retrieval deal well with noisy GPS input and can leverage map information.

However, these benefits apply only to the candidates selected during the retrieval phase. If the best candidate is not in the candidate set, it doesn’t matter how good our ranking model is; customers will not get what they want.

More recently, we have extended the learning-to-rank approach to include retrieval, in what we are calling learning-to-rank-and-retrieve (LTR&R). Where most existing retrieval models are static (deterministic), learning to retrieve is dynamic and leverages customer feedback.

Consequently, we advocate an approach to learning to retrieve that uses contextual multiarmed bandits, a form of reinforcement learning that optimizes the trade-off between exploring new retrieval strategies and exploiting known ones, in order to minimize “regret”.

In what follows, we review prior approaches to both retrieval and ranking and show how, for all of their success, they still have shortcomings that LTR&R helps address.

Candidate selection strategies

Structured search and query understanding

A common candidate retrieval strategy is full-text search, which indexes free-text documents as bags of words stored in an inverted index using term statistics to generate relevance scores (e.g., the BM25 ranking function). The inverted index maps words to documents containing those words.

Full-text search solves for many search use cases, especially when there is an expectation that the candidates for display (e.g., track titles or artist names) should bear a lexical similarity to the query.

Related content
Applications in product recommendation and natural-language processing demonstrate the approach’s flexibility and ease of use.

We can extend full-text search in a couple of ways. One is to bias the results using some measure of entity quality. For example, we can take the popularity of a music track into account when computing a candidate score such that the more popular of two tracks with identical titles will be more likely to make it into the top page.

We can also extend full-text search by applying it in the context of structured data (often referred to as metadata). For instance, fields in a document might contain entity categories (e.g., product types or topics) or entity attributes (such as brand or color) that a more elaborate scoring function (e.g., Lucene scoring) could take into account.

Structured search (SS) can be effectively combined with query understanding (QU), which maps query tokens to entity categories, attributes, or combinations of the two, later used as retrieval constraints. These methods often use content understanding to extract metadata from free text in order to tag objects or entities with categories and attributes stored as fields, adding structure to the underlying text.

Neural retrieval models

More recently, inspired by advances in representation learning, transformers, and large language models for natural-language processing (NLP), search engineers and scientists have turned their attention to vector search (a.k.a. embedding-based retrieval). Vector search uses deep-learning models to produce dense (e.g., sentence-BERT) as well as sparse (e.g., SPLADE) vector representations, called embeddings, that capture the semantic content of queries, contexts, and entities. These models enable information retrieval through fast k-nearest-neighbor (k-NN) vector similarity searches using exact and approximate nearest-neighbor (ANN) algorithms.

Related content
Thorsten Joachims answers 3 questions about the work that earned him the award.

Vector-and-hybrid (lexical + vector) search yields more relevant results than traditional approaches and runs faster on zero-shot IR models, according to the BEIR benchmark. In recommender systems, customer and session embeddings (as query/context) and entity embeddings are also used to personalize candidates in the retrieval stage. These documents can be further reranked by another LTR neural model in a multistage ranking architecture.

A memory index

Research suggests that users’ actions (e.g., query-click information) are the single most important field for retrieval, serving as a running memory of which entities have worked and which haven’t for a given query/context. In a cold-start scenario, we can even train a model that, when given an input document, generates questions that the document might answer (or, more broadly, queries for which the document might be relevant).

Related content
Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

These predicted questions (or queries) and scores are then appended to the original documents, which are indexed as predicted query-entity (Q2E) scores. Once query-entailed user actions on entities are captured, these computed statistics can replace predicted values, becoming actual Q2E scores that update the memory index used in ranking. As newly encountered queries show up, resulting from hits on other strategies, additional Q2E pairs and corresponding scores will be generated.

Real-world complications

In his article “Throwing needles into haystacks”, Daniel Tunkelang writes,

If you’re interested in a particular song, artist, or genre, your interaction with a search engine should be pretty straightforward. If you can express a simple search intent using words that map directly to structured data, you should reasonably expect the search application to understand what you mean and retrieve results accordingly.

However, as we will show, when building a product that serves millions of customers who express themselves in ways that are particular to their experiences and locales, we cannot reasonably expect queries “to express a search intent using words that map directly to structured data.”

Query processing.png
Processing of the query “tayler love” by a complex QU + SS retrieval system.

Let’s start by unpacking an example. Say we want to process the query “love” in a music search system. Even for a single domain (e.g., music/audio) there are many kinds of entities that could match this query, such as songs, artists, playlists, stations, and even podcasts. For each of these categories there could be hundreds and even thousands of possible candidates matching the keyword “love”. Beyond that, each category has different attributes that can also match the keyword (e.g., “love” maps to the genre “love songs”).

Customers may also expect to see related entities in the search results (e.g., artists related to a song returned). So while in the customer’s mind there is surely a main search intent, expressed via a keyword, there could be many possible mappings or interpretations that should be considered. Each of these has a likelihood of being correct, which would generate series of underlying structured searches, first to identify the possible targeted entities and then to bring along related or derived content.

Related content
Framework improves efficiency, accuracy of applications that search for a handful of solutions in a huge space of candidates.

As we have discovered, the crafting and maintenance of such a system is inherently non-scalable.

There is also the problem of compounding errors due to incorrect query understanding and/or content understanding. Category and attribute assignment to queries and entities, which typically uses a combination of human tagging and ML classification models, could be wrong or even completely missing. Furthermore, assignment values may not be binary. For example, “Taylor Swift” is clearly considered a pop artist, but some of her songs are also categorized as country music, alternative/indie, or indie folk.

Given the centrality of interpretation in selecting candidate results, the ability to learn from interactions with customers is essential to successful retrieval. Search applications based on QU+SS and/or FT search, however, usually use static query plans that cannot incorporate feedback in the retrieval stage.

On the other hand, while deep models show enormous promise, they also require significant investment and seem unlikely to completely replace keyword-based retrieval methods in the foreseeable future.

Learning to retrieve

In a world with infinite resources and no latency constraints, we wouldn’t need a retrieval funnel, and we might prefer to rank all possible candidates. But we don’t live in such a world. The reality is that deciding the right balance between increasing precision, usually by exploiting what we already know works, and increasing recall, by exploring more sources and increasing the number of candidates retrieved, is critical for search, ad platforms, and recommender systems. This is especially true in very dynamic applications such as music search, where context matters and new entities, categories, and attributes get added all the time.

And while it would be terrific if we could identify the single candidate selection strategy that produces an optimal top page for every query/context, in practice this is not achievable. The optimal candidate selection strategy depends on the query/context, but we do not know that dependency a priori. We need to learn to retrieve.

Related content
Two KDD papers demonstrate the power and flexibility of Amazon’s framework for “extreme multilabel ranking”.

One way to try to strike the right explore-exploit trade-off is to implement a multiarmed bandit (MAB) optimization, to learn a policy to select a subset of retrieval strategies (arms) that maximize the sum of stochastic rewards earned through a sequence of searches. That is, the policy should maximize the sum of the likelihoods that the expected results are present in the sets produced by such strategies, as later confirmed by user actions (such as clicking on a link).

The MAB approach uses reinforcement learning (RL) to draw more candidates from strategies that perform well while drawing fewer from underperforming strategies. In particular, for learning-to-retrieve, contextual multiarmed bandit algorithms are ideal, as they are designed to take the query/context features and action features (related to the candidate selection strategy) as input to maximize the reward while keeping healthy rate of exploration to minimize regret.

retrieval ensemble.png
Using reinforcement learning to blend podcast search results from different retrieval strategies.

For example, we expect that embeddings based on language models (i.e., a semantic strategy) will perform better for topic search, while the lexical strategy will be more useful for direct entity search (a.k.a. spearfishing queries).

Query/context features may include query information, such as language, type of query, QU slotting and intent classification, query length, etc.; demographic and profile information about your user; information about the current time, such as day of the week, weekend or not, morning or afternoon, holiday season or not, etc.; and historical (aggregate) data of user behavior, such as what genres of music this user has listened to the most.

Action features may include relevance/similarity scores; historical query-strategy performance and number of results; types of entities retrieved, e.g., newly added, popular, personalized, etc.; and information about the underlying retrieval source, e.g., lexical matching, text/graph embeddings, memory, etc.

The model learns a generalization based on these features and the combination of retrieval strategies that maximizes the reward. Finally, we use the union of results produced by the selected strategies to produce a single candidate list that bubbles up to the ranking layer.

LTR&R.png
Generic learning-to-rank-and-retrieve (LTR&R) architecture.

Summary

In conclusion, using query understanding (when available) and structured search is a good place to start when building search systems. By adding learning-to-rank, you can start to reap the benefits of factoring in customer feedback and improving the system’s quality. However, this is not sufficient to address the hard problems we observe in real-life applications like music search.

As an extension to the common retrieval-and-ranking phases present in the multitier IR architectures used in most search, ads, and recommender systems, we propose a generic learning-to-rank-and-retrieve (LTR&R) system architecture that comprises multiple candidate generators based on different retrieval strategies. Some produce well-known, exploitable results, like those based on our memory index, while others focus more on exploration, producing novel, riskier, or more-unexpected results that can increase the diversity of the feedback and provide counterfactual data.

This feedback cannot be collected by the static (i.e., fully deterministic) retrieval-and-ranking systems used nowadays. We also suggest using ML, and in particular RL, to optimize the selection of the subset of retrieval strategies and the number of candidates drawn from them, to maximize the likelihood of finding the expected result in such sets.

By incorporating customer feedback and using ML for LTR&R we can (1) simplify the search systems and (2) bubble up the best possible candidates for our customers. LTR&R is a promising path to solving both precision-oriented search and broad and ambiguous queries that require more recall and exploration.

Acknowledgments: Chris Chow, Adam Tang, Geetha Aluri, and Boris Lerner

Related content

US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
LU, Luxembourg
Have you ever wondered how Amazon delivers timely and reliably hundreds of millions of packages to customer’s doorsteps? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! Amazon Transportation Services is seeking Applied (or Research) Scientists. As a key member of the central Research Science Team of ATS operations, these persons will be responsible for designing algorithmic solutions based on data and mathematics for optimizing the middle-mile Amazon transportation network. The job is opened in the EU Headquarters in Luxembourg (alternatively: Barcelona, Berlin or London), designed to maximize interaction with the team and stakeholders, but we will consider applicants with remote work requirements as well. Key job responsibilities Solve complex optimization and machine learning problems using scalable algorithmic techniques. Design and develop efficient research prototypes that address real-world problems in the middle-mile operations of Amazon. Lead complex time-bound, long-term as well as ad-hoc analyses to assist decision making. Communicate to leadership results from business analysis, strategies and tactics. A day in the life You will be brainstorming algorithmic approaches with team-mates to solve challenging problems for the middle-mile operations of Amazon. You will be developing and testing prototype solutions with above algorithmic techniques. You will be scavenging information from the sea of Amazon data to improve these solutions. You will be meeting with other scientists, engineers, stakeholders and customers to enhance the solutions and get them adopted. About the team The Science and Tech team of ATS EU is looking for candidates who are looking to impact the world with their mathematical and data-driven skills. ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We code our prototypes to be production-ready We prefer provably optimal solutions than heuristics, though we settle for heuristics when performance dictates it. Overall, we appreciate the value of correct modeling. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as a Research Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As a Research Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The economics team within Recruiting Engine uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which uses a range of approaches to develop and deliver solutions that measurably achieve this goal. We are looking for an Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. She/He/They will produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Amazon. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. She/He/They will work well in a team setting with individuals from diverse disciplines and backgrounds. She/He/They will serve as an ambassador for science and a scientific resource for business teams. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating the model. They will be customer-centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Bellevue
We’re seeking a thought leader to direct Generative AI and machine learning initiatives aimed at scaling the $600B+ Amazon ecommerce business. This person will also be a deep learning practitioner/thinker and guide the research in these areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual use cases through the use of Generative AI. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. About the team The Applied AI team uses advanced ML and Generative AI techniques to help scale the inputs for our large e-commerce business. Scaling in the past was limited by roles that could be done manually, in a timely manner. This is a new focus for our business, and the opportunity is huge! We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA