Five ways the ABACUS label advances nature-based carbon removal

From more-accurate measurement of carbon dioxide removal to greater diversity in restoration design, the ABACUS label’s requirements help advance the integrity of restoration projects in the voluntary carbon market.

Amazon cofounded the Climate Pledge in 2019 to commit to reaching net-zero carbon by 2040. The first priority of the pledge is to implement decarbonization strategies — in line with the Paris Agreement — through operational changes such as improving efficiency, driving forward scalable carbon-free energy sources, reducing waste, and innovating materials.

However, alongside real business change that directly reduces greenhouse gas emissions, there is also need for large-scale investments in climate change mitigation outside of our value chain (what we call carbon neutralization). At Amazon, we do this through both nature-based solutions and technological carbon dioxide removal.

Nature-based carbon removal harnesses the power of photosynthesis to sequester carbon in natural and managed ecosystems. This means altering land management in alignment with nature through native reforestation, agroforestry, and other forms of high-quality restoration. These activities alone have the potential to remove 2–4 billion tons of carbon per year; that’s almost half of the estimated 5–10 billion tons per year that experts estimate is likely needed through the end of the century in order to keep our global temperatures at safe levels.

While the voluntary carbon market has the potential to bring billions of dollars of finance to restoration projects, less than 3% of credits issued to date come from nature-based carbon removal. This is due to the voluntary carbon market’s prices’ falling below the costs of high-quality nature-based restoration.

That’s where ABACUS comes in. ABACUS is a set of principles and requirements, codified within Verra’s Verified Carbon Standard, that helps advance the integrity of restoration projects within the voluntary carbon market. ABACUS was developed by a working group of expert practitioners, conservation professionals, and scientists — including Amazon’s own carbon neutralization scientists — in an effort to raise the quality bar for agroforestry and native-restoration projects. The ABACUS label has already begun to raise the quality bar for leading buyers.

Below are five big ideas within ABACUS that help raise the bar on scientific rigor and transparency.

  1. Dynamic baseline to measure additionality

    Historically, restoration carbon projects assume that whatever land use was occurring before a project takes place — pasture or agriculture, for example — would have continued unaltered without the project intervention. This assumption ignores the myriad ecological, economic, and policy dynamics that could affect carbon removal without assistance from the voluntary carbon market.

    Related content
    Investing in 500+ solar and wind projects, bringing carbon-free energy to dirty grids, and buying Renewable Energy Certificates all played a role.

    In addition to demonstrating that a project would not be viable without carbon credit finance, ABACUS requires a treatment-control approach to measuring additionality, or the carbon removal resulting from the project above and beyond what would have occurred otherwise. This means matching the project “treatment” area — based on historical, satellite-based proxies for biomass — to a population of “control” plots that are followed through time. Each of these controls represents a potential alternate reality for the project in the absence of restoration.

    If the control plots regain forest carbon at pace with the project, this indicates that the project may have regained forest carbon on its own, without the intervention. If the control plots remain low-carbon, degraded land, we can be more confident that the project’s climate impacts are additional. By treating additionality as dynamic instead of static, we’re able to obtain a more data-driven estimation of the true impact of restoration.

  2. Carbon projects as engines for agricultural production

    Carbon removal cannot come at the expense of food production; in fact, these challenges are inextricably linked. Under some projections, agricultural production will need to double by 2050, even as the least productive pasture and croplands are restored to forest cover. Sustainably intensifying agriculture to increase food production, while sparing land for carbon removal — or, better, integrating carbon removal within productive agricultural systems — is critical to reconciling these needs.

    Drone footage of a mature cocoa, coconut, and mahogany agroforestry system, adjacent to a degraded pasture in southeast Pará, Brazil.
    ABACUS seeks to restore degraded pasturelands to diverse agroforestry systems like this one. (Drone footage courtesy of Eric Plançon)

    But the voluntary carbon market is not equipped to tackle this challenge. Carbon removal projects that displace agricultural production often result in indirect land use change and associated emissions, as agricultural markets replace lost production to serve growing demand (“leakage”).

    These crop- and region-specific leakage effects are difficult to quantify reliably. Conventional leakage methodologies impose standardized deductions based on default carbon leakage rates when agricultural production is displaced. This creates a persistent source of uncertainty and risk of over-crediting, and the approach misses an opportunity to build synergies between restoration and agricultural production.

    Related content
    From investing in new carbon-free energy projects to advocating for grid modernization and collaborating with key stakeholders around the world, Amazon is working toward a cleaner energy future.

    ABACUS instead takes a “food-forward” approach to leakage accounting. Rather than using an imprecise default value to quantify leakage effects, ABACUS requires projects to eliminate leakage by maintaining or enhancing agricultural production in the project areas and surrounding landscapes. By recognizing the land-sparing effect of enhancing production of different types of commodities, ABACUS encourages projects to co-optimize for carbon and agricultural production and avoids locking regions into specific agricultural products. The working group is engaging partners to create commodity-specific leakage metrics based on land-carbon “opportunity costs” to estimate, and mitigate, the impacts of leakage.

  3. Abbreviated crediting periods for durability assurance

    Carbon stored in ecosystems can be highly durable, but it faces persistent, long-term climate risks such as fire, drought, and land use change, which must be responsibly managed. Nature-based carbon removal should seek “effective permanence” — an actual net greenhouse gas benefit to the atmosphere that is equal to, or greater than, the net benefit represented by the credits. In addition, the removal should ensure that this balance can be maintained indefinitely.

    On the other hand, agroforestry and restoration projects can catalyze shifts to land use systems that durably enhance carbon storage even beyond what is credited. This can happen through spillover effects, continued carbon removal after the crediting period, and biophysical cooling feedbacks, among other factors. ABACUS includes several methods that improve the likelihood that nature-based carbon remains durably stored — for example, requiring projects to plant ecologically appropriate restoration systems and to create public plans for the longevity of project activities even after the support of carbon revenues.

    Related content
    Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

    One of ABACUS’s key innovations is to limit the crediting period in an effort to maximize uncredited removals. The ABACUS working group found that revenues from credits generated beyond year 30 are mostly immaterial to investment decisions today, due to their heavy discounts. By shortening the crediting period to 40 years maximum — as opposed to as much as 100 years under some voluntary carbon market standards — ABACUS will create a source of uncredited carbon removal that can serve as an additional buffer against future reversals.

    Additionally, ABACUS proposes that projects will be required to allocate a portion of carbon credits issued late in the crediting period (i.e., years 31–40) to a “long-term permanence mechanism” such as an enhanced buffer pool or insurance product. Achieving increased confidence in the effective permanence of nature-based carbon credits may require stringing together removals or replacing a moderate-durability credit with a high-durability credit, if and when previously credited removals are reversed. Economically, such a construct is currently likely to be cost effective compared to today’s high-durability carbon dioxide removal.

  4. Going beyond commercial monoculture plantations

    Forest plantations already cover nearly 300 million hectares globally — roughly equivalent to the entire area of India. That figure has more than doubled in the last 30 years, without a robust voluntary carbon market, and it is projected to continue growing to provide timber, pulpwood, firewood, and charcoal to increasing populations and a growing economy.

    Brazil_Drone.png
    Orthorectified mosaic capturing a range of land management types on a typical farm in the Amazon basin, Brazil. We can see the contrast between low-carbon-density pasture (left) and diverse agroforestry (center), which combines shade-tolerant commodity production with native, carbon-rich hardwood trees. ABACUS is designed to support native restoration and agroforestry interventions on formerly forested, degraded land.
    Photos captured and combined by ICRAF-Brazil on behalf of the Agroforestry Accelerator.

    As a first step, ABACUS prohibits most monocultures and requires project developers to use observed or modeled data to demonstrate that planted systems are ecologically appropriate for the landscape. This approach avoids projects seeking to reforest with systems that aren’t suitable for the location’s native biomass potential — a function of climate, soil type, water availability, and elevation, among other things. Credit buyers are encouraged to send demand signals that further encourage biodiverse, ecologically sound, and socially beneficial restoration.

  5. Transparency to foster competition on quality

    For some aspects of restoration, it’s challenging to prescribe universally applicable requirements without stifling innovation and local knowledge: every restored ecosystem is unique in its own way. ABACUS introduces multiple requirements for added transparency that will allow buyers, investors, and the public to better assess for themselves the effectiveness of project designs and measurement.

    Related content
    Amazon advocates for updating carbon accounting to measure where renewable-energy projects will have the greatest impact.

    For example, ABACUS projects will need to publish their in-situ inventory measurements, systematically justify their use of allometric or other scaling models, and report on design approaches to avoid measurement or sampling bias. Instead of once every five years or so, ABACUS requires projects to annually map disturbances, to ensure that carbon credited and subsequently reversed is immediately identified. With enhanced transparency, the ABACUS working group hopes to incentivize project developers to compete on quality.

  6. ABACUS doesn’t solve all of the challenges of quantifying the complete climate impact of nature-based carbon removal, and it is no replacement for the stakeholder engagement necessary to ensure genuine socio-economic benefits on the ground. Many important improvements remain for future versions of the label’s principles and requirements. As we learn, the ABACUS working group will continue to enhance the scientific rigor of and public confidence in ecosystem restoration, catalyzing rural restoration economies and livelihoods and — if we succeed — helping to enable billions of tons of ecosystem carbon removal across the world.

Research areas

Related content

US, CA, Culver City
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are forming a new organization within Prime Video to redefine our operational landscape through the power of artificial intelligence. As a Applied Scientist within this initiative, you will be a technical leader helping to design and build the intelligent systems that power our vision. You will tackle complex and ambiguous problems, designing and delivering scalable and resilient agentic AI and ML solutions from the ground up. You will not only write high-quality, maintainable software and models, but also mentor other scientists, influence our technical strategy, and drive engineering best practices across the team. Your work will directly contribute to making Prime Video's operations more efficient and will set the technical foundation for years to come. Key job responsibilities • Lead the design and architecture of highly scalable, available, and resilient services for our AI automation platform. • Write high-quality, maintainable, and robust code to solve complex business problems, building flexible systems without over-engineering. • Act as a technical leader and mentor for other engineers on the team, assisting with career growth and encouraging excellence. • Work through ambiguous requirements, cut through complexity, and translate business needs into scalable technical solutions. • Take ownership of the full software development lifecycle, including design, testing, deployment, and operations. • Work closely with product managers, scientists, and other engineers to build and launch new features and systems. About the team This role offers a unique opportunity to shape the future of one of Amazon's most exciting businesses through the application of AI technologies. If you're passionate about leveraging AI to drive real-world impact at massive scale, we want to hear from you.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions which measure the comprehensive impact of advertiser's ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We also own the science solutions for AI tools that unlock new insights and automate high-effort customer workflows, such as custom query and report generation based on natural language user requests. We leverage a host of scientific technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As an Applied Scientist on the team, you will lead measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Leverage deep expertise in one or more scientific disciplines to invent solutions to ambiguous ads measurement problems - Disambiguate problems to propose clear evaluation frameworks and success criteria - Work autonomously and write high quality technical documents - Implement a significant portion of critical-path code, and partner with engineers to directly carry solutions into production - Partner closely with other scientists to deliver large, multi-faceted technical projects - Share and publish works with the broader scientific community through meetings and conferences - Communicate clearly to both technical and non-technical audiences - Contribute new ideas that shape the direction of the team's work - Mentor more junior scientists and participate in the hiring process About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, WA, Seattle
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Bellevue
Are you inspired by invention? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Last Mile Simulations and Analytics Engineering team. WW AMZL Simulations and Analytics Engineering team is looking to build out our Simulation team to drive innovation across our Last Mile network. We start with the customer and work backwards in everything we do. If you’re interested in joining a rapidly growing team working to build a unique, solutions advisory group with a relentless focus on the customer, you’ve come to the right place. This is a blue-sky role that gives you a chance to roll up your sleeves and dive into big data sets in order to build discrete event 3D simulations using tools like Flexsim, Anylogic, Emulate 3D etc and experimentation systems at scale, build optimization algorithms and leverage cutting-edge technologies across Amazon. This is an opportunity to think big about how to solve a challenging problem for the customers. As a Simulation Scientist, you are expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. You will apply cutting edge designs and methodologies for complex use cases across Last Mile network to drive innovation. In addition, you will contribute to the end state vision for simulation and experimentation of future delivery stations at Amazon. Key job responsibilities Key job responsibilities • Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages • Lead strategic modeling and simulation research projects to drive process design decisions • Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards • Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact • Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations • Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects • Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments • Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline • Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices • Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms • Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout • Deliver results according to project schedules and quality A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a highly innovative product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Science manager to join our Applied AI team and lead a cross-functional team of scientists and engineers who work on LLM-based solutions. On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. You will be responsible for leading a cross functional team of scientists and engineer and developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Senior Applied Science Manager who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in leading teams that build highly scalable systems and system design, have excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. Your work will directly impact our customers in the form of novel products and services.
US, WA, Seattle
The Seller Fees organization drives the monetization infrastructure powering Amazon's global marketplace, processing billions of transactions for over two million active third-party sellers worldwide. Our team owns the complete technical stack and strategic vision for fee computation systems, leveraging advanced machine learning to optimize seller experiences and maintain fee integrity at unprecedented scale. We're seeking an exceptional Applied Scientist to push the boundaries of large-scale ML systems in a business-critical domain. This role presents unique opportunities to • Architect and deploy state-of-the-art transformer-based models for fee classification and anomaly detection across hundreds of millions of products • Pioneer novel applications of multimodal LLMs to analyze product attributes, images, and seller metadata for intelligent fee determination • Build production-scale generative AI systems for fee integrity and seller communications • Advance the field of ML through novel research in high-stakes, large-scale transaction processing • Develop SOTA causal inference frameworks integrated with deep learning to understand fee impacts and optimize seller outcomes • Collaborate with world-class scientists and engineers to solve complex problems at the intersection of deep learning, economics, and large business systems. If you're passionate about advancing the state-of-the-art in applied ML/AI while tackling challenging problems at global scale, we want you on our team! Key job responsibilities Responsibilities: . Design measurable and scalable science solutions that can be adopted across stores worldwide with different languages, policy and requirements. · Integrate AI (both generative and symbolic) into compound agentic workflows to transform complex business systems into intelligent ones for both internal and external customers. · Develop large scale classification and prediction models using the rich features of text, image and customer interactions and state-of-the-art techniques. · Research and implement novel machine learning, statistical and econometrics approaches. · Write high quality code and implement scalable models within the production systems. · Stay up to date with relevant scientific publications. · Collaborate with business and software teams both within and outside of the fees organization.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems.