Five ways the ABACUS label advances nature-based carbon removal

From more-accurate measurement of carbon dioxide removal to greater diversity in restoration design, the ABACUS label’s requirements help advance the integrity of restoration projects in the voluntary carbon market.

Amazon cofounded the Climate Pledge in 2019 to commit to reaching net-zero carbon by 2040. The first priority of the pledge is to implement decarbonization strategies — in line with the Paris Agreement — through operational changes such as improving efficiency, driving forward scalable carbon-free energy sources, reducing waste, and innovating materials.

However, alongside real business change that directly reduces greenhouse gas emissions, there is also need for large-scale investments in climate change mitigation outside of our value chain (what we call carbon neutralization). At Amazon, we do this through both nature-based solutions and technological carbon dioxide removal.

Nature-based carbon removal harnesses the power of photosynthesis to sequester carbon in natural and managed ecosystems. This means altering land management in alignment with nature through native reforestation, agroforestry, and other forms of high-quality restoration. These activities alone have the potential to remove 2–4 billion tons of carbon per year; that’s almost half of the estimated 5–10 billion tons per year that experts estimate is likely needed through the end of the century in order to keep our global temperatures at safe levels.

While the voluntary carbon market has the potential to bring billions of dollars of finance to restoration projects, less than 3% of credits issued to date come from nature-based carbon removal. This is due to the voluntary carbon market’s prices’ falling below the costs of high-quality nature-based restoration.

That’s where ABACUS comes in. ABACUS is a set of principles and requirements, codified within Verra’s Verified Carbon Standard, that helps advance the integrity of restoration projects within the voluntary carbon market. ABACUS was developed by a working group of expert practitioners, conservation professionals, and scientists — including Amazon’s own carbon neutralization scientists — in an effort to raise the quality bar for agroforestry and native-restoration projects. The ABACUS label has already begun to raise the quality bar for leading buyers.

Below are five big ideas within ABACUS that help raise the bar on scientific rigor and transparency.

  1. Dynamic baseline to measure additionality

    Historically, restoration carbon projects assume that whatever land use was occurring before a project takes place — pasture or agriculture, for example — would have continued unaltered without the project intervention. This assumption ignores the myriad ecological, economic, and policy dynamics that could affect carbon removal without assistance from the voluntary carbon market.

    Related content
    Investing in 500+ solar and wind projects, bringing carbon-free energy to dirty grids, and buying Renewable Energy Certificates all played a role.

    In addition to demonstrating that a project would not be viable without carbon credit finance, ABACUS requires a treatment-control approach to measuring additionality, or the carbon removal resulting from the project above and beyond what would have occurred otherwise. This means matching the project “treatment” area — based on historical, satellite-based proxies for biomass — to a population of “control” plots that are followed through time. Each of these controls represents a potential alternate reality for the project in the absence of restoration.

    If the control plots regain forest carbon at pace with the project, this indicates that the project may have regained forest carbon on its own, without the intervention. If the control plots remain low-carbon, degraded land, we can be more confident that the project’s climate impacts are additional. By treating additionality as dynamic instead of static, we’re able to obtain a more data-driven estimation of the true impact of restoration.

  2. Carbon projects as engines for agricultural production

    Carbon removal cannot come at the expense of food production; in fact, these challenges are inextricably linked. Under some projections, agricultural production will need to double by 2050, even as the least productive pasture and croplands are restored to forest cover. Sustainably intensifying agriculture to increase food production, while sparing land for carbon removal — or, better, integrating carbon removal within productive agricultural systems — is critical to reconciling these needs.

    Drone footage of a mature cocoa, coconut, and mahogany agroforestry system, adjacent to a degraded pasture in southeast Pará, Brazil.
    ABACUS seeks to restore degraded pasturelands to diverse agroforestry systems like this one. (Drone footage courtesy of Eric Plançon)

    But the voluntary carbon market is not equipped to tackle this challenge. Carbon removal projects that displace agricultural production often result in indirect land use change and associated emissions, as agricultural markets replace lost production to serve growing demand (“leakage”).

    These crop- and region-specific leakage effects are difficult to quantify reliably. Conventional leakage methodologies impose standardized deductions based on default carbon leakage rates when agricultural production is displaced. This creates a persistent source of uncertainty and risk of over-crediting, and the approach misses an opportunity to build synergies between restoration and agricultural production.

    Related content
    From investing in new carbon-free energy projects to advocating for grid modernization and collaborating with key stakeholders around the world, Amazon is working toward a cleaner energy future.

    ABACUS instead takes a “food-forward” approach to leakage accounting. Rather than using an imprecise default value to quantify leakage effects, ABACUS requires projects to eliminate leakage by maintaining or enhancing agricultural production in the project areas and surrounding landscapes. By recognizing the land-sparing effect of enhancing production of different types of commodities, ABACUS encourages projects to co-optimize for carbon and agricultural production and avoids locking regions into specific agricultural products. The working group is engaging partners to create commodity-specific leakage metrics based on land-carbon “opportunity costs” to estimate, and mitigate, the impacts of leakage.

  3. Abbreviated crediting periods for durability assurance

    Carbon stored in ecosystems can be highly durable, but it faces persistent, long-term climate risks such as fire, drought, and land use change, which must be responsibly managed. Nature-based carbon removal should seek “effective permanence” — an actual net greenhouse gas benefit to the atmosphere that is equal to, or greater than, the net benefit represented by the credits. In addition, the removal should ensure that this balance can be maintained indefinitely.

    On the other hand, agroforestry and restoration projects can catalyze shifts to land use systems that durably enhance carbon storage even beyond what is credited. This can happen through spillover effects, continued carbon removal after the crediting period, and biophysical cooling feedbacks, among other factors. ABACUS includes several methods that improve the likelihood that nature-based carbon remains durably stored — for example, requiring projects to plant ecologically appropriate restoration systems and to create public plans for the longevity of project activities even after the support of carbon revenues.

    Related content
    Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

    One of ABACUS’s key innovations is to limit the crediting period in an effort to maximize uncredited removals. The ABACUS working group found that revenues from credits generated beyond year 30 are mostly immaterial to investment decisions today, due to their heavy discounts. By shortening the crediting period to 40 years maximum — as opposed to as much as 100 years under some voluntary carbon market standards — ABACUS will create a source of uncredited carbon removal that can serve as an additional buffer against future reversals.

    Additionally, ABACUS proposes that projects will be required to allocate a portion of carbon credits issued late in the crediting period (i.e., years 31–40) to a “long-term permanence mechanism” such as an enhanced buffer pool or insurance product. Achieving increased confidence in the effective permanence of nature-based carbon credits may require stringing together removals or replacing a moderate-durability credit with a high-durability credit, if and when previously credited removals are reversed. Economically, such a construct is currently likely to be cost effective compared to today’s high-durability carbon dioxide removal.

  4. Going beyond commercial monoculture plantations

    Forest plantations already cover nearly 300 million hectares globally — roughly equivalent to the entire area of India. That figure has more than doubled in the last 30 years, without a robust voluntary carbon market, and it is projected to continue growing to provide timber, pulpwood, firewood, and charcoal to increasing populations and a growing economy.

    Brazil_Drone.png
    Orthorectified mosaic capturing a range of land management types on a typical farm in the Amazon basin, Brazil. We can see the contrast between low-carbon-density pasture (left) and diverse agroforestry (center), which combines shade-tolerant commodity production with native, carbon-rich hardwood trees. ABACUS is designed to support native restoration and agroforestry interventions on formerly forested, degraded land.
    Photos captured and combined by ICRAF-Brazil on behalf of the Agroforestry Accelerator.

    As a first step, ABACUS prohibits most monocultures and requires project developers to use observed or modeled data to demonstrate that planted systems are ecologically appropriate for the landscape. This approach avoids projects seeking to reforest with systems that aren’t suitable for the location’s native biomass potential — a function of climate, soil type, water availability, and elevation, among other things. Credit buyers are encouraged to send demand signals that further encourage biodiverse, ecologically sound, and socially beneficial restoration.

  5. Transparency to foster competition on quality

    For some aspects of restoration, it’s challenging to prescribe universally applicable requirements without stifling innovation and local knowledge: every restored ecosystem is unique in its own way. ABACUS introduces multiple requirements for added transparency that will allow buyers, investors, and the public to better assess for themselves the effectiveness of project designs and measurement.

    Related content
    Amazon advocates for updating carbon accounting to measure where renewable-energy projects will have the greatest impact.

    For example, ABACUS projects will need to publish their in-situ inventory measurements, systematically justify their use of allometric or other scaling models, and report on design approaches to avoid measurement or sampling bias. Instead of once every five years or so, ABACUS requires projects to annually map disturbances, to ensure that carbon credited and subsequently reversed is immediately identified. With enhanced transparency, the ABACUS working group hopes to incentivize project developers to compete on quality.

  6. ABACUS doesn’t solve all of the challenges of quantifying the complete climate impact of nature-based carbon removal, and it is no replacement for the stakeholder engagement necessary to ensure genuine socio-economic benefits on the ground. Many important improvements remain for future versions of the label’s principles and requirements. As we learn, the ABACUS working group will continue to enhance the scientific rigor of and public confidence in ecosystem restoration, catalyzing rural restoration economies and livelihoods and — if we succeed — helping to enable billions of tons of ecosystem carbon removal across the world.

Research areas

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions that measure the comprehensive impact of ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We leverage a host of scientific methods, approaches and technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As a Senior Applied Scientist on the team, you will lead the development of measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Lead a team of scientists to innovate on state-of-the-art ads measurement solutions leveraging artificial intelligence, causal inference, natural language processing, computer vision, and large language models. - Directly contribute to the end-to-end delivery of production solutions through careful designs and owning implementation of significant portions of critical-path code - Lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for others with exemplary analyses; maintainable, extensible code; and simple, effective solutions. - Influence team business and engineering strategies. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations among scientists and engineers to move fast and broaden impact. - Actively engage in the development of others, both within and outside of the team. - Regularly engage with the broader science community with presentations, publications, and patents. About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team Agentic AI drives innovation at the forefront of artificial intelligence, enabling customers to transform their businesses through cutting-edge AI solutions. We build and deliver the foundational AI services that power the future of cloud computing, helping organizations harness the potential of AI to solve their most complex challenges. Join our dynamic team of AI/ML practitioners, applied scientists, software engineers, and solution architects who work backwards from customer needs to create groundbreaking technologies. If you're passionate about shaping the future of AI while making a meaningful impact for customers worldwide, we want to hear from you. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.