AWS VP of AI and data on computer vision research at Amazon

In his keynote address at CVPR, Swami Sivasubramanian considers the many ways that Amazon incorporates computer vision technology into its products and makes it directly available to Amazon Web Services’ customers.

At this year’s Computer Vision and Pattern Recognition Conference (CVPR) — the premier computer vision conference — Amazon Web Services’ vice president for AI and data, Swami Sivasubramanian, gave a keynote address titled “Computer vision at scale: Driving customer innovation and industry adoption”. What follows is an edited version of that talk.

Related content
As in other areas of AI, generative models and foundation models — such as vision-language models — are a hot topic.

Amazon has been working on AI for more than 25 years, and that includes our ongoing innovations in computer vision. Computer vision is part of Amazon’s heritage, ethos, and future — and today, we’re using it in many parts of the company.

Computer vision technology helps power our e-commerce recommendations engine on Amazon.com, as well as the customer reviews you see on our product pages. Our Prime Air drones use computer vision and deep learning, and the Amazon Show uses computer vision to streamline customer interactions with Alexa. Every day, more than half a million vision-enabled robots assist with stocking inventory, filling orders, and sorting packages for delivery.

I’d like to take a closer look at a few such applications, starting with Amazon Ads.

Amazon Ads Image Generator

Advertisers often struggle to create visually appealing and effective ads, especially when it comes to generating multiple variations and optimizing for different placements and audiences. That’s why we developed an AI-powered image generation tool called Amazon Ads Image Generator.

With this tool, advertisers can input product images, logos, and text prompts, and an AI model will generate multiple versions of visually appealing ads tailored to their brands and messaging. The tool aims to simplify and streamline the ad creation process for advertisers, allowing them to produce engaging visuals more efficiently and cost effectively.

Ad Generator.png
Examples of the types of ad variations generated by the Amazon Ads Image Generator.

To build the Image Generator, we used both Amazon machine learning services such as Amazon SageMaker and Amazon SageMaker Jumpstart and human-in-the-loop workflows that ensure high-quality and appropriate images. The architecture consists of modular microservices and separate components for model development, registry, model lifecycle management, selecting the appropriate model, and tracking the job throughout the service, as well as a customer-facing API.

Amazon One

In the retail setting, we’re reimagining identification, entry, and payment with Amazon One, a fast, convenient, and contactless experience that lets customers leave their wallets — and even their phones — at home. Instead, they can use the palms of their hands to enter a facility, identify themselves, pay, present loyalty cards or event tickets, and even verify their ages.

Amazon One is able to recognize the unique lines, grooves, and ridges of your palm and the pattern of veins just under the skin using infrared light. At registration, proprietary algorithms capture and encrypt your palm image within seconds. The Amazon One device uses this information to create your palm signature and connect it to your credit card or your Amazon account.

To ensure Amazon One’s accuracy, we trained it on millions of synthetically generated images with subtle variations, such as illumination conditions and hand poses. We also trained our system to detect fake hands, such as a highly detailed silicon hand replica, and reject them.

Amazon One synthetic images.jpg
Examples of the types of synthetic images used to train the Amazon One model.

Protecting customer data and safeguarding privacy are foundational design principles with Amazon One. Palm images are never stored on-device. Rather, the images are immediately encrypted and sent to a highly secure zone in the Amazon Web Services (AWS) cloud, custom-built for Amazon One, where the customer’s palm signature is created.

Customers like Crunch Fitness are taking advantage of Amazon One and features like the membership linking capability, which addresses a traditional pain point for both customers and the fitness industry. Crunch Fitness announced that it was the first fitness brand to introduce Amazon One as an entry option for its members at select locations nationwide.

NFL Next Gen Stats

Related content
Spliced binned-Pareto distributions are flexible enough to handle symmetric, asymmetric, and multimodal distributions, offering a more consistent metric.

Twenty-five years ago, the height of innovation in NFL broadcasts was the superimposition of a yellow line on the field to mark the first-down distance. These types of on-screen fan experiences have come a long way since then, thanks in large part to AI and machine learning (ML) technologies.

For example, as part of our ongoing partnership with the NFL, we’re delivering Prime Vision with Next Gen Stats during Thursday Night Football to provide insights gleaned by tracking RFID chips embedded in players’ shoulder pads.

One of our most recent innovations is the Defensive Alerts feature shown below, which tracks the movements of defensive players before the snap and uses an ML model to identify “players of interest” most likely to rush the quarterback (circled in red). This unique capability came out of a collaboration between the Thursday Night Football producers, engineers, and our computer vision team.

Defensive alerts.png
The new defensive-alert feature from NFL Nex Gen Stats.

In recent months, Amazon Science has profiled a range of other Amazon computer vision projects, from Project P.I., a fulfillment center technology that uses generative AI and computer vision to help spot, isolate, and remove imperfect products before they’re delivered to customers, to Virtual Try-All, which enables customers to visualize any product in any personal setting.

But for now, I’d like to turn from Amazon products and services that rely on computer vision to the ways in which AWS puts computer vision technologies directly into our customers’ hands.

The AWS ML stack

At AWS, our mission is to make it easy for every developer, data scientist, and researcher to build intelligent applications and leverage AI-enabled services that unlock new value from their data. We do this with the industry’s most comprehensive set of ML tools, which we think of as constituting a three-layer stack.

At the top of the stack are applications that rely on large language models (LLMs), like Amazon Q, our generative-AI-powered assistant for accelerating software development and helping customers extract useful information from their data.

Related content
AWS service enables machine learning innovation on a robust foundation.

At the middle layer, we offer a wide variety of services that enable developers to build powerful AI applications, from our computer vision services and devices to Amazon Bedrock, a secure and easy way to build generative-AI apps with the latest and greatest foundation models and the broadest set of capabilities for security, privacy, and responsible AI.

And at the bottom layer, we provide high-performance, cost-effective infrastructure that is purpose-built for ML.

Let’s look at few examples in more detail, starting with one our most popular vision services: Amazon Rekognition.

Amazon Rekognition

Amazon Rekognition is a fully managed service that uses ML to automatically extract information from images and video files so that customers can build computer vision models and apps more quickly, at lower cost, and with customization for different business needs.

This includes support for a variety of use cases, from content moderation, which enables the detection of unsafe or inappropriate content across images and videos, to custom labels that enable customers to detect objects like brand logos. And most recently we introduced an anti-spoofing feature to help customers verify that only real users, and not spoofs or bad actors, can access their services.

Amazon Textract

Amazon Textract uses optical character recognition to convert images or text — whether from a scanned document, PDF, or a photo of a document — into machine-encoded text. But it goes beyond traditional OCR technology by not only identifying each character, word, and letter but also the contents of fields in forms and information stored in tables.

For example, when presented with queries like the ones below, Textract can create specialized response objects by leveraging a combination of visual, spatial, and language cues. Each object assigns its query a short label, or “alias”. It then provides an answer to the query, the confidence it has in that answer, and the location of the answer on the page.

Textract.png
An example of the outputs of a specialized Textract response object.

Amazon Bedrock

Finally, let’s look at how we’re enabling computer vision technologies with Amazon Bedrock, a fully managed service that makes it easy for customers to build and scale generative-AI applications. Tens of thousands of customers have already selected Amazon Bedrock as the foundation for their generative-AI strategies because it gives them access to the broadest selection of first- and third-party LLMs and foundation models. This includes models from AI21 Labs, Anthropic, Cohere, Meta, Mistral AI, and Stability AI, as well as our own Titan family of models.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

One of those models is the Titan Image Generator, which enables customers to produce high-quality, realistic images or enhance existing images using natural-language prompts. Amazon Science reported on the Titan Image Generator when we launched it last year at our re:Invent conference.

Responsible AI

We remain committed to the responsible development and deployment of AI technology, around which we made a series of voluntary commitments at the White House last year. To that end, we’ve launched new features and techniques such as invisible watermarks and a new method for assessing “hallucinations” in generative models.

By default, all Titan-generated images contain invisible watermarks, which are designed to help reduce the spread of misinformation by providing a discreet mechanism for identifying AI-generated images. AWS is among the first model providers to widely release built-in invisible watermarks that are integrated into the image outputs and are designed to be tamper-resistant.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

Hallucination occurs when the data generated by a generative model do not align with reality, as represented by a knowledge base of “facts”. The alignment between representation and fact is referred to as grounding. In the case of vision-language models, the knowledge base to which generated text must align is the evidence provided in images. There is a considerable amount of work ongoing at Amazon on visual grounding, some of which was presented at CVPR.

One of the necessary elements of controlling hallucinations is to be able to measure them. Consider, for example, the following image-prompt pair and the output generated by a vision-language (VL) model. If the model extends its output with the highest-probability next word, it will hallucinate a fridge where the image includes none:

VL kitchen.png
Input image, prompt, and output probabilities from a vision-language model.

 Existing datasets for evaluating hallucinations typically consist of specific questions like “Is there a refrigerator in this image?” But at CVPR, our team presented a paper describing a new benchmark called THRONE, which leverages LLMs themselves to evaluate hallucinations in response to free-form, open-ended prompts such as “Describe what you see”.

In other work, AWS researchers have found that one of the reasons modern transformer-based vision-language models hallucinate is that they cannot retain information about the input image prompt: they progressively “forget” it as more tokens are generated and longer contexts used.

Related content
Method preserves knowledge encoded in teacher model’s attention heads even when student model has fewer of them.

Recently, state space models have resurfaced ideas from the ’70s in a modern key, stacking dynamical models into modular architectures that have arbitrarily long memory residing in their state. But that memory — much like human memory — grows lossier over time, so it cannot be used effectively for grounding. Hybrid models that combine state space models and attention-based networks (such as transformers) are also gaining popularity, given their high recall capabilities over longer contexts. Literally every week, a growing number of variants appear in the literature.

At Amazon, we want to not only make the existing models available for builders to use but also empower researchers to explore and expand the current set of hybrid models. For this reason, we plan to open-source a class of modular hybrid architectures that are designed to make both memory and inference computation more efficient.

To enable efficient memory, these architectures use a more general elementary module that seamlessly integrates both eidetic (exact) and fading (lossy) memory, so the model can learn the optimal tradeoff. To make inference more efficient, we optimize core modules to run on the most efficient hardware — specifically, AWS Trainium, our purpose-built chip for training machine learning models.

It's an exciting time for AI research, with innovations emerging at a breakneck pace. Amazon is committed to making those innovations available to our customers, both indirectly, in the AI-enabled products and services we offer, and directly, through AWS’s commitment to democratize AI.

Research areas

Related content

CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Sr. Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers - Mentor junior scientists
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, TX, Austin
Amazon Security is seeking a Senior Applied Scientist to lead GenAI acceleration within the Secure Third Party Tools (S3T) organization. The S3T team has bold ambitions to re-imagine security products that serve Amazon's pace of innovation at our global scale. This role will focus on leveraging large language models and agentic AI to transform third-party security risk management, automate complex vendor assessments, streamline controllership processes, and dramatically reduce assessment cycle times. You will drive builder efficiency and deliver bar-raising security engagements across Amazon. Key job responsibilities Own and drive end-to-end technical vision for large-scoped science initiatives focused on third-party security risk management, independently defining research agendas, success metrics, and multi-quarter roadmaps with minimal oversight. Pioneer transformative approaches to automate third-party security review processes using state-of-the-art large language models, designing intelligent systems for vendor assessment document analysis, security questionnaire automation, risk signal extraction, and compliance decision support. Architect and lead development of advanced GenAI and agentic frameworks including multi-agent orchestration, RAG pipelines, and autonomous workflows purpose-built for third-party risk evaluation, security documentation processing, and scalable vendor assessment at enterprise scale. Build ML-powered risk intelligence capabilities that enhance third-party threat detection, vulnerability classification, and continuous monitoring throughout the vendor lifecycle. Serve as strategic thought partner to senior leadership and business stakeholders, translating complex AI capabilities into high-impact third-party security solutions, influencing investment priorities, and delivering measurable risk reduction and operational efficiency. Partner with Software Engineering and Data Engineering as technical co-owner to deploy production-grade ML solutions that integrate seamlessly with existing third-party risk management workflows and scale across the organization. Mentor and elevate scientists and engineers, establishing best practices for security-focused AI development while advancing the state of the art through applied research and publications. About the team Security is central to maintaining customer trust and delivering delightful customer experiences. At Amazon, our Security organization is designed to drive bar-raising security engagements. Our vision is that Builders raise the Amazon security bar when they use our recommended tools and processes, with no overhead to their business. Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores. Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
JP, 13, Tokyo
Elevate Your Economic Research at the Forefront of Global Retail Innovation We're seeking a brilliant economics researcher to join our dynamic team in Tokyo, where your analytical skills will drive transformative insights across Amazon's global retail ecosystem. As an intern, you'll collaborate with world-class economists, data scientists, and business leaders to solve complex challenges that shape the future of e-commerce. A day in the life Your day will be filled with intellectual exploration and impactful problem-solving. You'll dive deep into large-scale datasets, develop sophisticated econometric models, and translate complex economic research into actionable business strategies. Expect to engage in collaborative discussions, leverage modern analytical tools, and contribute to projects that have real-world implications for our global customers.
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, VA, Herndon
The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Machine Learning Engineer to join our team at Amazon Web Services (AWS). Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? In this role, you'll work directly with customers to design, evangelize, implement, and scale AI/ML solutions that meet their technical requirements and business objectives. You'll be a key player in driving customer success through their AI transformation journey, providing deep expertise in machine learning, generative AI, and best practices throughout the project lifecycle. As a Machine Learning Engineer within the AWS Professional Services organization, you will be proficient in architecting complex, scalable, and secure machine learning solutions tailored to meet the specific needs of each customer. You'll help customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, and define paths to navigate technical or business challenges. Working closely with stakeholders, you'll assess current data infrastructure, develop proof-of-concepts, and propose effective strategies for implementing AI and generative AI solutions at scale. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. This position requires that the candidate selected must currently possess and maintain an active TS/SCI security clearance with polygraph. Key job responsibilities - Designing and implementing complex, scalable, and secure AI/ML solutions on AWS tailored to customer needs, including selecting and fine-tuning appropriate models for specific use cases - Developing and deploying machine learning models and generative AI applications that solve real-world business problems, conducting experiments and optimizing for performance at scale - Collaborating with customer stakeholders to identify high-value AI/ML use cases, gather requirements, and propose effective strategies for implementing machine learning and generative AI solutions - Providing technical guidance on applying AI, machine learning, and generative AI responsibly and cost-efficiently, troubleshooting throughout project delivery and ensuring adherence to best practices - Acting as a trusted advisor to customers on the latest advancements in AI/ML, emerging technologies, and innovative approaches to leveraging diverse data sources for maximum business impact - Sharing knowledge within the organization through mentoring, training, creating reusable AI/ML artifacts, and working with team members to prototype new technologies and evaluate technical feasibility About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.