Amazon Bedrock offers access to multiple generative AI models

AWS service enables machine learning innovation on a robust foundation.

The drive to harness the transformative power of high-end machine learning models has meant some businesses are facing new challenges. Teams want assistance in crafting compelling documents, summarizing complex documents, building conversational-AI agents, or generating striking, customized visuals.

Find out about all of the recent updates designed to help even more customers build and scale generative AI applications.

In April, Amazon stepped in to assist customers contending with the need to build and scale generative AI applications with a new service: Amazon Bedrock. Bedrock arms developers and businesses with secure, seamless, and scalable access to cutting-edge models from a range of leading companies.

Bedrock provides access to Stability AI’s text-to-image models — including Stable Diffusion, multilingual LLMs from AI21 Labs, and Anthropic’s multilingual LLMs, called Claude and Claude Instant, which excel at conversational and text-processing tasks. Bedrock has been further expanded with the additions of Cohere’s foundation models, as well as Anthropic’s Claude 2 and Stability AI’s Stable Diffusion XL 1.0.

These models, trained on large amounts of data, are increasingly known under the umbrella term foundation models (FMs) — hence the name Bedrock. The abilities of a wide range of FMs — as well as Amazon’s own new FM, called Amazon Titan — are available through Bedrock’s API.

Werner Vogels and Swami Sivasubramanian discuss generative AI

Why gather all these models in one place?

“The world is moving so fast on FMs, it is rather unwise to expect that one model is going to get everything right,” says Amazon senior principal engineer Rama Krishna Sandeep Pokkunuri. “All models come with individual strengths and weaknesses, so our focus is on customer choice.”

Expanding ML access

Bedrock is the latest step in Amazon’s ongoing effort to democratize ML by making it easy for customers to access high-performing FMs, without the large costs inherent in both building those models and maintaining the necessary infrastructure. To that end, the team behind Bedrock is working to enable customers to privately customize that suite of FMs with their own data.

This digital visualization, created with Stable Diffusion XL, reveals a mesmerizing array of embeddings in the latent space of a machine learning model. Each point represents a unique concept or data point, with lines and colors representing the distances and relationships between points. Together they produce a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections.
In this digital visualization, created with Stable Diffusion XL, the latent space of a machine learning model reveals a mesmerizing array of embeddings. It is a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections. Each point represents a unique concept or data point. The environment is digital, with lines and colors representing the distances and relationships between embeddings.

“Customers don’t have to stick to our training recipes. We are working to provide a high degree of customizability,” says Bing Xiang, director of applied science at Amazon Web Services' AI Labs.

“For example," Xiang continues, “customers can just point a Titan model at dozens of labeled examples they collected for their use cases and stored in Amazon S3 and fine-tune the model for the specific task.”

Not only is a suite of AI tools offered, it is also meticulously safeguarded. At Amazon, data security is so critical it is often referred to as “job zero”. While Bedrock hosts a growing number of third-party models, those third-party companies never see any customer data. That data, which is encrypted, and the Bedrock-hosted models themselves, remain firmly ensconced on Amazon’s secure servers.

Tackling toxicity

In addition to its commitment to security, Amazon has experience in the LLM arena, having developed a range of proprietary FMs in recent years. Last year, it made its Alexa Teacher Model — a 20-billion-parameter LLM — publicly available. Also last year, Amazon launched Amazon CodeWhisperer, a fully managed service powered by LLMs that can generate reams of robust computer code from natural-language prompts, among other things.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

Continuing in that vein, a standout feature of Bedrock is the availability of Amazon’s Titan FMs, including a generative LLM and an embeddings LLM. Titan FMs are built to help customers grapple with the challenge of toxic content by detecting and removing harmful content in data and filtering model outputs that contain inappropriate content.

When several open-source LLMs burst onto the world stage last year, users quickly realized they could be prompted to generate toxic output, including sexist, racist, and homophobic content. Part of the problem, of course, is that the Internet is awash with such material, so models can absorb some of this toxicity and bias.

Amazon’s extensive investments in responsible AI include the building of guardrails and filters into Titan to ensure the models minimize toxicity, profanity, and other inappropriate behavior. “We are aware that this is a challenging problem, one that will require continuous improvement,” Xiang observed.

Related content
Prompt engineering, adaptation of language models, and attempts to remediate large language models’ (LLMs’) “hallucinations” point toward future research in the field.

To that end, during the Titan models’ development, outputs undergo extensive “red teaming” — a rigorous evaluation process aimed at pinpointing potential vulnerabilities or flaws in a model's design. Amazon even had experts attempt to coax harmful behavior from the models using a variety of tricky text prompts.

“No system of this nature will be perfect, but we're creating Titan with utmost care,” says principal applied scientist Miguel Ballesteros. “We are working towards raising the bar in this field.”

Building Amazon Titan models for efficiency

Creating the Titan models also meant overcoming significant technological challenges, particularly in distributed computing.

“Imagine you are faced with a mathematical problem with four decomposable sub-problems that will take eight hours of solid brain work to complete,” explains Ramesh Nallapati, senior principal applied scientist. “If there were four of you working on it together, how long would it take? Two hours is the intuitive answer, because you are working in parallel.

Related content
Finding that 70% of attention heads and 20% of feed-forward networks can be excised with minimal effect on in-context learning suggests that large language models are undertrained.

“That’s not true in the real world, and it’s not true in the computing world,” Nallapati continues. “Why? Because communication time between parties and time for aggregating solutions from sub-problems must be factored in.”

In order to make the distributed computing efficient and cost effective, Amazon has developed both AWS Trainium accelerators — designed mainly for high-performance training of generative AI models, including large language models — and AWS Inferentia accelerators that power its models in operation. Both of these specialized accelerators offer higher throughput and lower cost per inference than comparable Amazon EC2 instances.

These accelerators need to constantly communicate and synchronize during training. To streamline this communication, the team employs 3-D parallelism. Here, three elements — parallelizing data mini-batches, parallelizing model parameters, and pipelining layer-wise computations across these accelerators — are distributed across hardware resources to varying degrees.

“Deciding on the combination of these three axes determines how we use the accelerators effectively,” says Nallapati.

Titan’s training task is further complicated by the fact that accelerators, like all sophisticated hardware, occasionally fail. “Using as many accelerators as we do, it is a question of days or weeks, but one of them is going to fail, and there’s a risk the whole thing is going to come down fast,” says Pokkunuri.

To tackle this reality, the team is pioneering ground-breaking techniques in resilience and fault tolerance in distributed computing.

Efficiency is critical in FMs — both for bottom-line considerations and from a sustainability standpoint, because FMs require immense power, both in training and in operation.

“Inferentia and Trainium are big strategic efforts to make sure our customers get the best cost performance,” says Pokkunuri.

Retrieval-augmented generation

Using Bedrock to efficiently combine the complementary abilities of the Titan models also puts the building blocks of a particularly useful process at a customer’s disposal, via a form of retrieval-augmented generation (RAG).

RAG can address a significant shortcoming in standalone LLMs — they cannot account for new events. GPT-4, for example, trained on information up to 2021, can only tell you that “the most significant recent Russian military action in Ukraine was in 2014”.

This graphic shows embeddings of text phrases in a representational space, a question "who won the 2022 world cup" and two answers "Messi secures first World Cup after extra-time drama" and "France wins in highest-scoring World Cup final since 1996" are linked to dots in the space, the Messi answer is closer to the question
Embedding news reports in a representational space enables the retrieval of information added since the last update to an LLM; the LLM can then leverage that information to generate text responses to queries (e.g., "Who won the 2022 World Cup?").

It is a massive and expensive undertaking to retrain huge LLMs, with the process itself taking months. RAG provides a way to both incorporate new content into LLMs’ outputs in-between re-trainings and provide a cost-effective way to leverage the power of LLMs on proprietary data.

For example, let’s say you run a big news or financial organization, and you want to use an LLM to intelligently interrogate your entire corpus of news or financial reports, which includes up-to-date knowledge.

“You will be able to use Titan models to generate text based on your proprietary content,” explains Ballesteros. “The Titan embeddings model helps to find documents that are relevant to the prompts. Then, the Titan generative model can leverage those documents as well as the information it has learned during training to generate text responses to the prompts. This allows customers to rapidly digest and query their own data sources.”

A commitment to responsible AI

In April, select Amazon customers were given access to Bedrock, to evaluate the service and provide feedback. Pokkunuri stresses the importance of this feedback: “We are not just trying to meet the bar here — we are trying to raise it. We’re looking to give our customers a delightful experience, to make sure their expectations are being met with this suite of models.”

The stepped launch of Bedrock also underscores Amazon's commitment to responsible AI, says Xiang. “This is a very powerful service, and our commitment to responsible AI is paramount.”

As the number of powerful FMs grows, expect Amazon’s Bedrock to grow in tandem, with an expanding roster of leading third-party models and more exclusive models from Amazon itself.

“Generative AI has evolved rapidly in the past few years, but it’s still in its early stage and has a huge potential,” says Xiang. “We are excited about the opportunity of putting Bedrock in the hands of our customers and helping to solve a variety of problems they are facing today and tomorrow.”

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.