Amazon Bedrock offers access to multiple generative AI models

AWS service enables machine learning innovation on a robust foundation.

The drive to harness the transformative power of high-end machine learning models has meant some businesses are facing new challenges. Teams want assistance in crafting compelling documents, summarizing complex documents, building conversational-AI agents, or generating striking, customized visuals.

Find out about all of the recent updates designed to help even more customers build and scale generative AI applications.

In April, Amazon stepped in to assist customers contending with the need to build and scale generative AI applications with a new service: Amazon Bedrock. Bedrock arms developers and businesses with secure, seamless, and scalable access to cutting-edge models from a range of leading companies.

Bedrock provides access to Stability AI’s text-to-image models — including Stable Diffusion, multilingual LLMs from AI21 Labs, and Anthropic’s multilingual LLMs, called Claude and Claude Instant, which excel at conversational and text-processing tasks. Bedrock has been further expanded with the additions of Cohere’s foundation models, as well as Anthropic’s Claude 2 and Stability AI’s Stable Diffusion XL 1.0.

These models, trained on large amounts of data, are increasingly known under the umbrella term foundation models (FMs) — hence the name Bedrock. The abilities of a wide range of FMs — as well as Amazon’s own new FM, called Amazon Titan — are available through Bedrock’s API.

Werner Vogels and Swami Sivasubramanian discuss generative AI

Why gather all these models in one place?

“The world is moving so fast on FMs, it is rather unwise to expect that one model is going to get everything right,” says Amazon senior principal engineer Rama Krishna Sandeep Pokkunuri. “All models come with individual strengths and weaknesses, so our focus is on customer choice.”

Expanding ML access

Bedrock is the latest step in Amazon’s ongoing effort to democratize ML by making it easy for customers to access high-performing FMs, without the large costs inherent in both building those models and maintaining the necessary infrastructure. To that end, the team behind Bedrock is working to enable customers to privately customize that suite of FMs with their own data.

This digital visualization, created with Stable Diffusion XL, reveals a mesmerizing array of embeddings in the latent space of a machine learning model. Each point represents a unique concept or data point, with lines and colors representing the distances and relationships between points. Together they produce a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections.
In this digital visualization, created with Stable Diffusion XL, the latent space of a machine learning model reveals a mesmerizing array of embeddings. It is a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections. Each point represents a unique concept or data point. The environment is digital, with lines and colors representing the distances and relationships between embeddings.

“Customers don’t have to stick to our training recipes. We are working to provide a high degree of customizability,” says Bing Xiang, director of applied science at Amazon Web Services' AI Labs.

“For example," Xiang continues, “customers can just point a Titan model at dozens of labeled examples they collected for their use cases and stored in Amazon S3 and fine-tune the model for the specific task.”

Not only is a suite of AI tools offered, it is also meticulously safeguarded. At Amazon, data security is so critical it is often referred to as “job zero”. While Bedrock hosts a growing number of third-party models, those third-party companies never see any customer data. That data, which is encrypted, and the Bedrock-hosted models themselves, remain firmly ensconced on Amazon’s secure servers.

Tackling toxicity

In addition to its commitment to security, Amazon has experience in the LLM arena, having developed a range of proprietary FMs in recent years. Last year, it made its Alexa Teacher Model — a 20-billion-parameter LLM — publicly available. Also last year, Amazon launched Amazon CodeWhisperer, a fully managed service powered by LLMs that can generate reams of robust computer code from natural-language prompts, among other things.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

Continuing in that vein, a standout feature of Bedrock is the availability of Amazon’s Titan FMs, including a generative LLM and an embeddings LLM. Titan FMs are built to help customers grapple with the challenge of toxic content by detecting and removing harmful content in data and filtering model outputs that contain inappropriate content.

When several open-source LLMs burst onto the world stage last year, users quickly realized they could be prompted to generate toxic output, including sexist, racist, and homophobic content. Part of the problem, of course, is that the Internet is awash with such material, so models can absorb some of this toxicity and bias.

Amazon’s extensive investments in responsible AI include the building of guardrails and filters into Titan to ensure the models minimize toxicity, profanity, and other inappropriate behavior. “We are aware that this is a challenging problem, one that will require continuous improvement,” Xiang observed.

Related content
Prompt engineering, adaptation of language models, and attempts to remediate large language models’ (LLMs’) “hallucinations” point toward future research in the field.

To that end, during the Titan models’ development, outputs undergo extensive “red teaming” — a rigorous evaluation process aimed at pinpointing potential vulnerabilities or flaws in a model's design. Amazon even had experts attempt to coax harmful behavior from the models using a variety of tricky text prompts.

“No system of this nature will be perfect, but we're creating Titan with utmost care,” says principal applied scientist Miguel Ballesteros. “We are working towards raising the bar in this field.”

Building Amazon Titan models for efficiency

Creating the Titan models also meant overcoming significant technological challenges, particularly in distributed computing.

“Imagine you are faced with a mathematical problem with four decomposable sub-problems that will take eight hours of solid brain work to complete,” explains Ramesh Nallapati, senior principal applied scientist. “If there were four of you working on it together, how long would it take? Two hours is the intuitive answer, because you are working in parallel.

Related content
Finding that 70% of attention heads and 20% of feed-forward networks can be excised with minimal effect on in-context learning suggests that large language models are undertrained.

“That’s not true in the real world, and it’s not true in the computing world,” Nallapati continues. “Why? Because communication time between parties and time for aggregating solutions from sub-problems must be factored in.”

In order to make the distributed computing efficient and cost effective, Amazon has developed both AWS Trainium accelerators — designed mainly for high-performance training of generative AI models, including large language models — and AWS Inferentia accelerators that power its models in operation. Both of these specialized accelerators offer higher throughput and lower cost per inference than comparable Amazon EC2 instances.

These accelerators need to constantly communicate and synchronize during training. To streamline this communication, the team employs 3-D parallelism. Here, three elements — parallelizing data mini-batches, parallelizing model parameters, and pipelining layer-wise computations across these accelerators — are distributed across hardware resources to varying degrees.

“Deciding on the combination of these three axes determines how we use the accelerators effectively,” says Nallapati.

Titan’s training task is further complicated by the fact that accelerators, like all sophisticated hardware, occasionally fail. “Using as many accelerators as we do, it is a question of days or weeks, but one of them is going to fail, and there’s a risk the whole thing is going to come down fast,” says Pokkunuri.

To tackle this reality, the team is pioneering ground-breaking techniques in resilience and fault tolerance in distributed computing.

Efficiency is critical in FMs — both for bottom-line considerations and from a sustainability standpoint, because FMs require immense power, both in training and in operation.

“Inferentia and Trainium are big strategic efforts to make sure our customers get the best cost performance,” says Pokkunuri.

Retrieval-augmented generation

Using Bedrock to efficiently combine the complementary abilities of the Titan models also puts the building blocks of a particularly useful process at a customer’s disposal, via a form of retrieval-augmented generation (RAG).

RAG can address a significant shortcoming in standalone LLMs — they cannot account for new events. GPT-4, for example, trained on information up to 2021, can only tell you that “the most significant recent Russian military action in Ukraine was in 2014”.

This graphic shows embeddings of text phrases in a representational space, a question "who won the 2022 world cup" and two answers "Messi secures first World Cup after extra-time drama" and "France wins in highest-scoring World Cup final since 1996" are linked to dots in the space, the Messi answer is closer to the question
Embedding news reports in a representational space enables the retrieval of information added since the last update to an LLM; the LLM can then leverage that information to generate text responses to queries (e.g., "Who won the 2022 World Cup?").

It is a massive and expensive undertaking to retrain huge LLMs, with the process itself taking months. RAG provides a way to both incorporate new content into LLMs’ outputs in-between re-trainings and provide a cost-effective way to leverage the power of LLMs on proprietary data.

For example, let’s say you run a big news or financial organization, and you want to use an LLM to intelligently interrogate your entire corpus of news or financial reports, which includes up-to-date knowledge.

“You will be able to use Titan models to generate text based on your proprietary content,” explains Ballesteros. “The Titan embeddings model helps to find documents that are relevant to the prompts. Then, the Titan generative model can leverage those documents as well as the information it has learned during training to generate text responses to the prompts. This allows customers to rapidly digest and query their own data sources.”

A commitment to responsible AI

In April, select Amazon customers were given access to Bedrock, to evaluate the service and provide feedback. Pokkunuri stresses the importance of this feedback: “We are not just trying to meet the bar here — we are trying to raise it. We’re looking to give our customers a delightful experience, to make sure their expectations are being met with this suite of models.”

The stepped launch of Bedrock also underscores Amazon's commitment to responsible AI, says Xiang. “This is a very powerful service, and our commitment to responsible AI is paramount.”

As the number of powerful FMs grows, expect Amazon’s Bedrock to grow in tandem, with an expanding roster of leading third-party models and more exclusive models from Amazon itself.

“Generative AI has evolved rapidly in the past few years, but it’s still in its early stage and has a huge potential,” says Xiang. “We are excited about the opportunity of putting Bedrock in the hands of our customers and helping to solve a variety of problems they are facing today and tomorrow.”

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, CA, Santa Clara
Amazon Q Business is an AI assistant powered by generative technology. It provides capabilities such as answering queries, summarizing information, generating content, and executing tasks based on enterprise data. We are seeking a Language Data Scientist II to join our data team. Our mission is to engineer high-quality datasets that are essential to the success of Amazon Q Business. From human evaluations and Responsible AI safeguards to Retrieval-Augmented Generation and beyond, our work ensures that Generative AI is enterprise-ready, safe, and effective for users. As part of our diverse team—including language engineers, linguists, data scientists, data engineers, and program managers—you will collaborate closely with science, engineering, and product teams. We are driven by customer obsession and a commitment to excellence. In this role, you will leverage data-centric AI principles to assess the impact of data on model performance and the broader machine learning pipeline. You will apply Generative AI techniques to evaluate how well our data represents human language and conduct experiments to measure downstream interactions. Key job responsibilities * oversee end-to-end evaluation data pipeline and propose evaluation metrics and methods * incorporate your knowledge of linguistic fundamentals, NLU, NLP to the data pipeline * process and analyze diverse media formats including audio recordings, video, images and text * perform statistical analysis of the data * write intuitive data generation & annotation guidelines * write advanced and nuanced prompts to optimize LLM outputs * write python scripts for data wrangling * automate repetitive workflows and improve existing processes * perform background research and vet available public datasets on topics such as long text retrieval, text generation, summarization, question-answering, and reasoning * leverage and integrate AWS services to optimize data collection workflows * collaborate with scientists, engineers, and product managers in defining data quality metrics and guidelines. * lead dive deep sessions with data annotators About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.