Amazon Bedrock offers access to multiple generative AI models

AWS service enables machine learning innovation on a robust foundation.

The drive to harness the transformative power of high-end machine learning models has meant some businesses are facing new challenges. Teams want assistance in crafting compelling documents, summarizing complex documents, building conversational-AI agents, or generating striking, customized visuals.

Find out about all of the recent updates designed to help even more customers build and scale generative AI applications.

In April, Amazon stepped in to assist customers contending with the need to build and scale generative AI applications with a new service: Amazon Bedrock. Bedrock arms developers and businesses with secure, seamless, and scalable access to cutting-edge models from a range of leading companies.

Bedrock provides access to Stability AI’s text-to-image models — including Stable Diffusion, multilingual LLMs from AI21 Labs, and Anthropic’s multilingual LLMs, called Claude and Claude Instant, which excel at conversational and text-processing tasks. Bedrock has been further expanded with the additions of Cohere’s foundation models, as well as Anthropic’s Claude 2 and Stability AI’s Stable Diffusion XL 1.0.

These models, trained on large amounts of data, are increasingly known under the umbrella term foundation models (FMs) — hence the name Bedrock. The abilities of a wide range of FMs — as well as Amazon’s own new FM, called Amazon Titan — are available through Bedrock’s API.

Werner Vogels and Swami Sivasubramanian discuss generative AI

Why gather all these models in one place?

“The world is moving so fast on FMs, it is rather unwise to expect that one model is going to get everything right,” says Amazon senior principal engineer Rama Krishna Sandeep Pokkunuri. “All models come with individual strengths and weaknesses, so our focus is on customer choice.”

Expanding ML access

Bedrock is the latest step in Amazon’s ongoing effort to democratize ML by making it easy for customers to access high-performing FMs, without the large costs inherent in both building those models and maintaining the necessary infrastructure. To that end, the team behind Bedrock is working to enable customers to privately customize that suite of FMs with their own data.

This digital visualization, created with Stable Diffusion XL, reveals a mesmerizing array of embeddings in the latent space of a machine learning model. Each point represents a unique concept or data point, with lines and colors representing the distances and relationships between points. Together they produce a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections.
In this digital visualization, created with Stable Diffusion XL, the latent space of a machine learning model reveals a mesmerizing array of embeddings. It is a multidimensional landscape filled with intricate clusters, swirling patterns, and hidden connections. Each point represents a unique concept or data point. The environment is digital, with lines and colors representing the distances and relationships between embeddings.

“Customers don’t have to stick to our training recipes. We are working to provide a high degree of customizability,” says Bing Xiang, director of applied science at Amazon Web Services' AI Labs.

“For example," Xiang continues, “customers can just point a Titan model at dozens of labeled examples they collected for their use cases and stored in Amazon S3 and fine-tune the model for the specific task.”

Not only is a suite of AI tools offered, it is also meticulously safeguarded. At Amazon, data security is so critical it is often referred to as “job zero”. While Bedrock hosts a growing number of third-party models, those third-party companies never see any customer data. That data, which is encrypted, and the Bedrock-hosted models themselves, remain firmly ensconced on Amazon’s secure servers.

Tackling toxicity

In addition to its commitment to security, Amazon has experience in the LLM arena, having developed a range of proprietary FMs in recent years. Last year, it made its Alexa Teacher Model — a 20-billion-parameter LLM — publicly available. Also last year, Amazon launched Amazon CodeWhisperer, a fully managed service powered by LLMs that can generate reams of robust computer code from natural-language prompts, among other things.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

Continuing in that vein, a standout feature of Bedrock is the availability of Amazon’s Titan FMs, including a generative LLM and an embeddings LLM. Titan FMs are built to help customers grapple with the challenge of toxic content by detecting and removing harmful content in data and filtering model outputs that contain inappropriate content.

When several open-source LLMs burst onto the world stage last year, users quickly realized they could be prompted to generate toxic output, including sexist, racist, and homophobic content. Part of the problem, of course, is that the Internet is awash with such material, so models can absorb some of this toxicity and bias.

Amazon’s extensive investments in responsible AI include the building of guardrails and filters into Titan to ensure the models minimize toxicity, profanity, and other inappropriate behavior. “We are aware that this is a challenging problem, one that will require continuous improvement,” Xiang observed.

Related content
Prompt engineering, adaptation of language models, and attempts to remediate large language models’ (LLMs’) “hallucinations” point toward future research in the field.

To that end, during the Titan models’ development, outputs undergo extensive “red teaming” — a rigorous evaluation process aimed at pinpointing potential vulnerabilities or flaws in a model's design. Amazon even had experts attempt to coax harmful behavior from the models using a variety of tricky text prompts.

“No system of this nature will be perfect, but we're creating Titan with utmost care,” says principal applied scientist Miguel Ballesteros. “We are working towards raising the bar in this field.”

Building Amazon Titan models for efficiency

Creating the Titan models also meant overcoming significant technological challenges, particularly in distributed computing.

“Imagine you are faced with a mathematical problem with four decomposable sub-problems that will take eight hours of solid brain work to complete,” explains Ramesh Nallapati, senior principal applied scientist. “If there were four of you working on it together, how long would it take? Two hours is the intuitive answer, because you are working in parallel.

Related content
Finding that 70% of attention heads and 20% of feed-forward networks can be excised with minimal effect on in-context learning suggests that large language models are undertrained.

“That’s not true in the real world, and it’s not true in the computing world,” Nallapati continues. “Why? Because communication time between parties and time for aggregating solutions from sub-problems must be factored in.”

In order to make the distributed computing efficient and cost effective, Amazon has developed both AWS Trainium accelerators — designed mainly for high-performance training of generative AI models, including large language models — and AWS Inferentia accelerators that power its models in operation. Both of these specialized accelerators offer higher throughput and lower cost per inference than comparable Amazon EC2 instances.

These accelerators need to constantly communicate and synchronize during training. To streamline this communication, the team employs 3-D parallelism. Here, three elements — parallelizing data mini-batches, parallelizing model parameters, and pipelining layer-wise computations across these accelerators — are distributed across hardware resources to varying degrees.

“Deciding on the combination of these three axes determines how we use the accelerators effectively,” says Nallapati.

Titan’s training task is further complicated by the fact that accelerators, like all sophisticated hardware, occasionally fail. “Using as many accelerators as we do, it is a question of days or weeks, but one of them is going to fail, and there’s a risk the whole thing is going to come down fast,” says Pokkunuri.

To tackle this reality, the team is pioneering ground-breaking techniques in resilience and fault tolerance in distributed computing.

Efficiency is critical in FMs — both for bottom-line considerations and from a sustainability standpoint, because FMs require immense power, both in training and in operation.

“Inferentia and Trainium are big strategic efforts to make sure our customers get the best cost performance,” says Pokkunuri.

Retrieval-augmented generation

Using Bedrock to efficiently combine the complementary abilities of the Titan models also puts the building blocks of a particularly useful process at a customer’s disposal, via a form of retrieval-augmented generation (RAG).

RAG can address a significant shortcoming in standalone LLMs — they cannot account for new events. GPT-4, for example, trained on information up to 2021, can only tell you that “the most significant recent Russian military action in Ukraine was in 2014”.

This graphic shows embeddings of text phrases in a representational space, a question "who won the 2022 world cup" and two answers "Messi secures first World Cup after extra-time drama" and "France wins in highest-scoring World Cup final since 1996" are linked to dots in the space, the Messi answer is closer to the question
Embedding news reports in a representational space enables the retrieval of information added since the last update to an LLM; the LLM can then leverage that information to generate text responses to queries (e.g., "Who won the 2022 World Cup?").

It is a massive and expensive undertaking to retrain huge LLMs, with the process itself taking months. RAG provides a way to both incorporate new content into LLMs’ outputs in-between re-trainings and provide a cost-effective way to leverage the power of LLMs on proprietary data.

For example, let’s say you run a big news or financial organization, and you want to use an LLM to intelligently interrogate your entire corpus of news or financial reports, which includes up-to-date knowledge.

“You will be able to use Titan models to generate text based on your proprietary content,” explains Ballesteros. “The Titan embeddings model helps to find documents that are relevant to the prompts. Then, the Titan generative model can leverage those documents as well as the information it has learned during training to generate text responses to the prompts. This allows customers to rapidly digest and query their own data sources.”

A commitment to responsible AI

In April, select Amazon customers were given access to Bedrock, to evaluate the service and provide feedback. Pokkunuri stresses the importance of this feedback: “We are not just trying to meet the bar here — we are trying to raise it. We’re looking to give our customers a delightful experience, to make sure their expectations are being met with this suite of models.”

The stepped launch of Bedrock also underscores Amazon's commitment to responsible AI, says Xiang. “This is a very powerful service, and our commitment to responsible AI is paramount.”

As the number of powerful FMs grows, expect Amazon’s Bedrock to grow in tandem, with an expanding roster of leading third-party models and more exclusive models from Amazon itself.

“Generative AI has evolved rapidly in the past few years, but it’s still in its early stage and has a huge potential,” says Xiang. “We are excited about the opportunity of putting Bedrock in the hands of our customers and helping to solve a variety of problems they are facing today and tomorrow.”

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques