A quick guide to Amazon’s papers at CVPR 2024

As in other areas of AI, generative models and foundation models — such as vision-language models — are a hot topic.

In the past few years, foundation models and generative-AI models — and particularly, large language models (LLMs) — have become a major topic of AI research. That’s true even in field of computer vision, with its increased focus on vision-language models that yoke LLMs and image encoders.

This shift can be seen in the topics of the Amazon papers accepted to this year’s Computer Vision and Pattern Recognition Conference (CVPR 2024). A plurality of the papers deal with vision-language models, while a number of others concern related topics such as visual question answering, hallucination mitigation, and retrieval-aided generation. At the same time, however, classical computer vision topics such as 3-D reconstruction, object tracking, and pose estimation remain well represented.

3-D reconstruction

No more ambiguity in 360◦ room layout via bi-layout estimation
Yu-Ju Tsai, Jin-Cheng Jhang, Jingjing Zheng, Wei Wang, Albert Chen, Min Sun, Cheng-Hao Kuo, Ming-Hsuan Yang

ViewFusion: Towards multi-view consistency via interpolated denoising
Xianghui Yang, Yan Zuo, Sameera Ramasinghe, Loris Bazzani, Gil Avraham, Anton van den Hengel

Multiview consistency.png
The object views produced by standard diffusion models are often realistic, but adjacent views may lack alignment (left). ViewFusion incorporates an autoregressive process that fosters consistency across views (right). From "ViewFusion: Towards multi-view consistency via interpolated denoising".

Algorithmic information theory

Interpretable measures of conceptual similarity by complexity-constrained descriptive auto-encoding
Alessandro Achille, Greg Ver Steeg, Tian Yu Liu, Matthew Trager, Carson Klingenberg, Stefano Soatto

Geospatial analysis

Bridging remote sensors with multisensor geospatial foundation models
Boran Han, Shuai Zhang, Xingjian Shi, Markus Reichstein

Hallucination mitigation

Multi-modal hallucination control by visual information grounding
Alessandro Favero, Luca Zancato, Matthew Trager, Siddharth Choudhary, Pramuditha Perera, Alessandro Achille, Ashwin Swaminathan, Stefano Soatto

THRONE: An object-based hallucination benchmark for the free-form generations of large vision-language models
Prannay Kaul, Zhizhong Li, Hao Yang, Yonatan Dukler, Ashwin Swaminathan, C. J. Taylor, Stefano Soatto

Metric learning

Learning for transductive threshold calibration in open-world recognition
Qin Zhang, Dongsheng An, Tianjun Xiao, Tong He, Qingming Tang, Ying Nian Wu, Joe Tighe, Yifan Xing, Stefano Soatto

Model robustness

GDA: Generalized diffusion for robust test-time adaptation
Yun Yun Tsai, Fu-Chen Chen, Albert Chen, Junfeng Yang, Che-Chun Su, Min Sun, Cheng-Hao Kuo

Object-centric learning

Adaptive slot attention: Object discovery with dynamic slot number
Ke Fan, Zechen Bai, Tianjun Xiao, Tong He, Max Horn, Yanwei Fu, Francesco Locatello, Zheng Zhang

Object tracking

Self-supervised multi-object tracking with path consistency
Zijia Lu, Bing Shuai, Yanbei Chen, Zhenlin Xu, Davide Modolo

Pose estimation

MRC-Net: 6-DoF pose estimation with multiscale residual correlation
Yuelong Li, Yafei Mao, Raja Bala, Sunil Hadap

Pose estimation.png
Image pairs in which the left image is a camera image and the right image superimposes colorized 3-D models of objects, with estimated six-degree-of-freedom poses, on the original image.

Responsible AI

FairRAG: Fair human generation via fair retrieval augmentation
Robik Shrestha, Yang Zou, James Chen, Zhiheng Li, Yusheng Xie, Tiffany Deng

Retrieval-augmented generation

CPR: Retrieval augmented generation for copyright protection
Aditya Golatkar, Alessandro Achille, Luca Zancato, Yu-Xiang Wang, Ashwin Swaminathan, Stefano Soatto


Sharpness-aware optimization for real-world adversarial attacks for diverse compute platforms with enhanced transferability
Muchao Ye, Xiang Xu, Qin Zhang, Jon Wu

Video-language models

VidLA: Video-language alignment at scale
Mamshad Nayeem Rizve, Fan Fei, Jayakrishnan Unnikrishnan, Son Tran, Benjamin Yao, Belinda Zeng, Mubarak Shah, Trishul Chilimbi

Vision-language models

Accept the modality gap: An exploration in the hyperbolic space
Sameera Ramasinghe, Violetta Shevchenko, Gil Avraham, Ajanthan Thalaiyasingam

Modality gap.png
"Accept the modality gap: An exploration in the hyperbolic space" propose a new angle-based contrastive loss that permits the placement of images anywhere along the axis emanating from a text embedding, enabling a hierarchy among images.

Enhancing vision-language pre-training with rich supervisions
Yuan Gao, Kunyu Shi, Pengkai Zhu, Edouard Belval, Oren Nuriel, Srikar Appalaraju, Shabnam Ghadar, Vijay Mahadevan, Zhuowen Tu, Stefano Soatto

GROUNDHOG: Grounding large language models to holistic segmentation
Yichi Zhang, Martin Ma, Xiaofeng Gao, Suhaila Shakiah, Qiaozi (QZ) Gao, Joyce Chai

Hyperbolic learning with synthetic captions for open-world detection
Fanjie Kong, Yanbei Chen, Jiarui Cai, Davide Modolo

Non-autoregressive sequence-to-sequence vision-language models
Kunyu Shi, Qi Dong, Luis Goncalves, Zhuowen Tu, Stefano Soatto

On the scalability of diffusion-based text-to-image generation
Hao Li, Yang Zou, Ying Wang, Orchid Majumder, Yusheng Xie, R. Manmatha, Ashwin Swaminathan, Zhuowen Tu, Stefano Ermon, Stefano Soatto

UNet scaling.png
The effect of UNet scaling on text-image alignment. In "On the scalability of diffusion-based text-to-image generation", Amazon researchers vary a UNet along two dimensions: channel number (left) and transformer depth (right). The prompts are (1) "square blue apples on a tree with circular yellow leaves"; (2) "five frosted glass bottles"; (3) "a yellow box to the right of a blue sphere"; (4) "the International Space Station flying in front of the moon".

Visual question answering

GRAM: Global reasoning for multi-page VQA
Tsachi Blau, Sharon Fogel, Roi Ronen, Alona Golts, Roy Ganz, Elad Ben Avraham, Aviad Aberdam, Shahar Tsiper, Ron Litman

Question aware vision transformer for multimodal reasoning
Roy Ganz, Yair Kittenplon, Aviad Aberdam, Elad Ben Avraham, Oren Nuriel, Shai Mazor, Ron Litman

Synthesize step-by-step: Tools, templates and LLMs as data generators for reasoning-based chart VQA
Zhuowan Li, Bhavan Jasani, Peng Tang, Shabnam Ghadar

Research areas

Related content

US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and Twitter, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role: We are looking for an Applied Scientist to solve challenging and open-ended problems in the domain of recommendations, search, ranking and information retrieval. As an Applied Scientist on Twitch's Community team, you will use ML to help viewers find streamers and communities they’ll love. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to the Applied Science Manager on the Community Discovery Team. This position is located in San Francisco, CA. You Will: - Develop and Productionize ML algorithms for recommendations, ranking and search problems that can improve discovery on Twitch. - Collaborate with our Product and Engineering teams to work backwards from customer discovery problems, to determine the ML solution (algorithm and pipeline) to have the biggest impact on our user base in the real world. - Participate in the scientific community at Twitch, Amazon, and the broader ML and risk community. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
We are building a world-class last mile delivery ecosystem with Amazon Flex as a cornerstone of this strategy. Amazon Flex works directly with independent contractors, to make deliveries to our customers. With Amazon Flex, delivery partners are their own boss, build their own schedule, and choose from different types of delivery opportunities (e.g. Amazon Fresh, Whole Foods Market, and Amazon Logistics). Amazon Flex is powered by a mobile app that works in sync with our advanced systems and processes, allowing delivery partners to secure delivery offers, track their delivery progress, and more. Economists at Amazon Flex partner closely with senior management, business stakeholders, scientists and engineers, and economist leadership to solve key business problems including pricing, promotions, offer optimization, recruiting, capacity planning, and beyond. Amazon Flex Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical labor, or related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of a cross-functional team that supports all of Amazon Last Mile Delivery Tech. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems across the business.
US, GA, Atlanta
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real- world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution A day in the life N/A About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Bellevue
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
US, WA, Bellevue
The Fulfillment by Amazon (FBA) team is looking for a passionate, curious, and creative Research Scientist, with expertise and experience in operations research, operations management, supply chains, and revenue management, to join our top-notch cross-domain FBA science team. As a research scientist you will be responsible for designing and implementing cutting edge optimization models and machine learning models and building automated inventory management system to solve key challenges facing the worldwide FBA Seller business, including 1) improving FBA Seller inventory efficiency, 2) efficiently balancing the supply and demand of FBA Seller capacity, 3) closing worldwide selection gap by enabling global selling profitability, and 4) driving out costs across the FBA supply chain to spin the flywheel. Unlike many companies who buy existing off-the-shelf planning systems, we are responsible for studying, designing, and building systems to suit Amazon’s needs. Our team members have an opportunity to be on the forefront of thought leadership by working on some of the most difficult problems in the industry with some of the best product managers, research scientists/statisticians/economists and software developers in the business. This role will work with other senior and principal scientists, and partner with engineering and product teams to integrate scientific work into production systems. Key job responsibilities • Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements • Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization • Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new inventory planning challenges • Create prototypes and simulations to test devised solutions • Advocate technical solutions to business stakeholders, engineering teams, as well as executive level decision makers • Work closely with engineers to integrate prototypes into production systems • Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features A day in the life As a Research Scientist, you will solve real world large inventory problems by analyzing large amounts of business data, defining new metrics and business cases, designing simulations and experiments, applying supply chain modeling techniques, creating optimization models, and collaborating with teammates in business, software, and research. The successful candidate has solid research experience in Operations Research preferably with focus on Operations Management or other closely related areas or in area of Machine Learning. He or she will lead the research where we are responsible for developing solutions to better manage and optimize worldwide FBA inventory capacity, while providing the best experience to our Sellers to growth their business. About the team Fulfillment by Amazon (FBA) is a service that allows sellers to outsource order fulfillment to Amazon, allowing sellers to leverage Amazon’s world-class facilities to provide customers Prime delivery promise. Sellers gain access to Prime members worldwide, see their sales lift, and are free to focus their time and resources on what they do best while Amazon manages fulfillment. Over the last several years, sellers have enjoyed strong business growth with FBA shipping more than half of all products offered by Amazon. FBA focuses on helping sellers with automating and optimizing the third-party supply chain. FBA sellers leverage Amazon’s expertise in machine learning, optimization, data analytics, econometrics, and market design to deliver the best inventory management experience to sellers. We work full-stack, from foundational backend systems to future-forward user interfaces. Our culture is centered on rapid prototyping, rigorous experimentation, and data-driven decision-making.
US, WA, Seattle
Are you passionate about delighting hundreds of millions of customers and building the best search experience to help customers make well-informed purchase decisions on Amazon? Are you passionate about building the next generation product shopping and search experience? The Search and Discover experience on Amazon is central to every customer’s shopping mission and purchasing journey. Amazon Search is looking for a self-driven, customer obsessed, and seasoned research scientist to drive the overall search customer insights efforts and measure customer perceptions for Amazon Search. If you are passionate about using user research & customer insights to influence the future direction of Amazon Search and building a small but top notch user research science team, this is a job for you. In this highly visible role, you will work across cross-functional teams and collaborate with partners to drive user research planning, align research goals to the product roadmap, and own user research execution and final deliverables to make sure that we are always positioned to exceed customer expectations. You will present the search customer insights to various stakeholders including senior executives. Key job responsibilities * Design and conduct significantly complex research studies that impact long-term product strategy and the future of customer experience. * Build customer perception measurements for Amazon search experience and develop the methods to correlate customer perception with search experience improvements. * Define search customer insights research strategy, own the research roadmap and prioritize research opportunities across different areas. * Identify customer segments and latent customer needs, define and improve methodologies, data collection, analysis/synthesis, and identify opportunities to improve customer experience. * Manage multiple customer insights research project execution, prioritization, and ensure research projects timely delivery at the highest quality levels. * Adapt and/or create new customer insights research methodologies and workflows to support product goals at scale and work effectively with agencies and vendors. * Work cross functionally and collaborate with technical product managers, technical program managers, UX designers, science, and engineering teams to proactively plan research and align research goals to the product roadmap. * Work with data analysts/data scientists to correlate qualitative research with quantitative data analysis, and interpret complicated data across quantitive and behavioral analysis. * Own customer insights research results and prioritization communication with all stakeholders including senior executives. * Build, manage, and grow a small team of research scientists. About the team Our team operate in a friendly, fast-paced, and diverse and inclusive work environment. We are driven by the excitement of inventing products, building technologies, and providing services that change lives. We embrace new ways of doing things, make decisions quickly, and are not afraid to fail. We have the scope, benefits, and support of a large company and the spirit and heart of a small startup. At Amazon, our mission is to be Earth’s most customer-centric company. Our actions, goals, projects, programs, and inventions begin and end with the customer top of mind.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X org within Amazon Advertising aims to democratize access to high-quality creative assets, including copy, images and video, by building and productizing generative AI-driven tools for advertisers. We are investing in latent-diffusion and DiT models, LLMs, computer vision, reinforcement learning, and image + video synthesis. The solutions we develop will be deployed for use by self-service advertisers and agencies, as well as available to premium brands that advertise on Amazon. We are seeking an experienced science leader who is adept at a variety of skills; especially in generative AI, computer vision, and large language models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. The right candidate will be an inventor at heart, provide science leadership, establish the right direction and vision, build team mechanisms, foster the spirit of collaboration and innovation within the org, and execute against a roadmap. The leader will provide both technical direction as well as manage a sizable team of scientists. They will need to be adept at recruiting, launching AI models into production, writing vision/direction documents, and building team mechanisms that will foster innovation and execution. Key job responsibilities * Drive end-to-end applied science projects that have a high degree of ambiguity, scale, complexity * Provide technical / science leadership related to computer vision, large language models, and generative image + video. * Research new and innovative machine learning approaches. * Recruit high performing Applied Scientists to the team and provide mentorship. * Establish team mechanisms, including team building, planning, and document reviews.
CA, BC, Vancouver
Technology is giving the beauty industry a makeover! Are you interested to disrupt and redefine the way customers buy Beauty products online? Are you interested in using the latest advances in machine learning, computer vision, and big-data technologies to build online customer experiences for Beauty products that can equal or even surpass an in-store experience? Amazon Beauty is reinventing the shopping experience for all beauty customers across the largest selection of brands to become the most trusted beauty destination. Beauty is unique in retail with a diverse customer set along with products that are emotional, fun, and creative. This is your chance to get in on the ground floor to build something entirely new and transform an industry! To achieve our vision, we think big and tackle technological challenges every day. We need builders and disruptors who are not afraid to innovate! Our architecture and development processes support rapid experimentation, global deployments, and self-service capabilities that allow us to scale better. We build: - Amazon scale systems: All our technology needs to work at Amazon scale, serving millions of customers with millisecond-level latency. - Immersive customer experiences: We will create elevated and immersive customer experiences that using cutting-edge UI-technologies and user-centric design patterns. - Computer Vision and augmented reality (AR) experiences: We bring exciting experiences directly to the customer's mobile phone using their cameras and combinations of computer vision and AR. - Personalization using machine learning: We use latest advances in ML and GenAI to provide better-personalized shopping experiences. - Data & analytics pipelines: Amazon is data-driven, and a robust data backbone is necessary for our systems. We build on core AWS services such as EC2, S3, DynamoDB, SageMaker, StepFunctions, etc. - Multi-device support: We build for all traditional surfaces - desktop browsers, mobile browsers, and mobile applications. Key job responsibilities We are looking for talented and innovation-driven scientists who are passionate about leveraging the latest advances in Generative AI, Diffusion Models, Computer Vision (CV), Graphics, AR/VR, Virtual Try-On, Image Processing, and related technologies, to solve customer problems in the Beauty space. You will have an opportunity to revolutionize the customer shopping experience across the world's most extensive catalog of beauty products. You will be directly responsible for leading the ideation, design, prototyping, development, and launch of innovative scientific solutions that address customer problem in the beauty and shopping space. You will closely partner with product managers, UX designers, engineers, and the broader Amazon scientific community to pioneer state-of-the-art solutions to extremely challenging problems in machine learning and CV. You will be our organization's Tech Evangelist and represent our organization in key internal and external AI, ML, or Vision conferences. About the team Amazon Beauty Tech is a key and essential part of the Consumables organization and North America Stores. We are a passionate group of engineers, scientists, product managers, and designers who drive technological innovation to improve the customer shopping experience. We have a startup-like work culture where innovation is encouraged; we are never afraid to propose big ideas for fear of failing!
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative Artificial Intelligence (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, CA, Santa Clara
Amazon AI is looking for world class scientists to join its Amazon Q Builder CodeGen team. Amazon Q Builder CodeGen is an LLM-based AWS service that makes developers more productive by providing them code recommendations. Amazon Q Builder CodeGen leverages large language models, program analysis, responsible AI, robustness, efficient inference techniques and a lot more in building this technology. You will invent, implement, and deploy state of the art algorithms and systems, and be at the heart of a growing and exciting focus area for AWS. Candidate experiences of interest include but are not limited to: LLM, RAG, model training and inference, trustworthy AI, responsible AI, program analysis and program synthesis in general. The Amazon Web Services (AWS) Next Gen DevX (NGDE) team uses generative AI and foundation models to reimagine the experience of all builders on AWS. From the IDE to web-based tools and services, AI will help engineers work on large and small applications. We explore new technologies and find creative solutions. Curiosity and an explorative mindset can find a place here to impact the life of engineers around the world. If you are excited about this space and want to enlighten your peers with new capabilities, this is the team for you. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.