How Project P.I. helps Amazon remove imperfect products

A combination of generative AI and computer vision imaging tunnels is helping Amazon proactively improve the customer experience.

Although there are hundreds of millions of products stored in Amazon fulfillment centers, it’s very rare for customers to report shipped products as damaged. However, Amazon’s culture of customer obsession means that teams are actively working to find and remove even that relatively small number of imperfect products before they’re delivered to customers.

Related content
Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.

One of those teams includes scientists who are using generative AI and computer vision, powered by AWS services such as Amazon Bedrock and Amazon SageMaker, to help spot, isolate, and remove imperfect items.

Inside Amazon fulfillment centers across North America, products ranging from dog food and phone cases to T-shirts and books pass through imaging tunnels for a wide variety of uses, including sorting products based on their intended destination. Those use cases have been extended to include the use of artificial intelligence to inspect individual items for defects.

For example, optical character recognition (OCR) — the process that converts an image of text into a machine-readable text format — checks expiration dates on product packaging to ensure expired items are not sent to customers. Computer vision (CV) models — trained with reference images from the product catalog and actual images of products sent to customers — pore over color and monochrome images for signs of product damage such as bent book covers.

Amaozn Science Project P.I. Private Investigator

Additionally, a recent breakthrough solution leverages the ability of generative AI to process multimodal information by synthesizing evidence from images captured during the Amazon fulfillment process and combining it with written customer feedback to trigger even faster corrective actions.

This effort, referred to collectively as Project P.I., which stands for “private investigator”, encompasses the team’s vision of using a detective-like toolset to uncover both defects and, wherever possible, their cause — to address the issue at its root before a product reaches the customer.

"We want to equip ourselves with the most powerful, scalable tools and levers to help us protect our customers’ trust,” said Pingping Shan, director of perfect order experience at Amazon.

Defect detection

Project P.I. is an outgrowth of Amazon’s product quality program, and the tools and systems developed by the team’s scientists include machine learning models that assist selling partners with listing products with accurate information.

“The product quality team is constantly looking for ways to both reduce the burden on the sellers and to proactively verify the condition of inventory in fulfillment centers,” Shan said.

An early solution was an OCR model that checks the labeling information when inventory arrives and compares that to the information in Amazon’s database. If a mismatches occurs — such as a pallet of dog food with an earlier sell-by date than the date in the database — the team can isolate and inspect the pallet and prevent any expired products from reaching the customer.

When an item-level defect is detected, Amazon takes several steps to resolve the issue, including investigating whether the item is one in a defective batch and, if so, isolating the batch from the rest of the items, explained Angela Ke, a senior product manager.

“We want to make sure that customers don’t have to experience issues with product quality. That’s really the vision of Project P.I.,” she said. “We want to get it right for customers the first time, so we want to inspect the products before they leave our fulfillment center, and we incorporate AI to streamline the workflow.”

Customer feedback aids model training

Despite the team’s best efforts, sometimes product quality issues only become known after an item has been delivered to customers, noted Mark Ma, a principal product manager. Those arise in cases where customers have filed a return noting the issue. In those instances, the team tracks down the batch the product came from, verifies the issue, removes those items from fulfillment center shelves, issues refunds, and communicates the issue to the seller.

“We know that that correcting the defects after they happen is not the best way to protect and improve the customer experience. That’s why we started exploring what kind of data we can gather further upstream,” he said. Those discussions eventually led to leveraging the tunnel images to better identify products with defects and take surgical and proactive action to address them — before they’re packaged and shipped.

Related content
DocFormerV2 makes sense of documents using local features, outperforming much bigger models.

One of the early challenges with that approach entailed training CV models to correctly identify defects, noted Vincent Gao, a senior science manager on the product quality team.

“It’s like finding a needle in a haystack,” he said. “We needed a model that could accurately identify those among all the other normal products. Otherwise, we could be finding a lot of false positives making the fulfillment process inefficient.”

Gao’s team turned to an ensemble approach that combines self-supervised models with supervised transformer models —a neural-network architecture that uses attention mechanisms to improve performance on machine learning tasks — to spot the difference between normal and defective items. By learning what the “correct” product looks like from fulfillment center images associated with normal orders, the model can compare an item on its way to be packaged against its “normal” image and provide a measurement of how much it differs.

This approach allowed the team to more reliably spot obvious product defects, such as a book with a torn cover or an empty canister of tennis balls, yet it still couldn’t account for some of the fine grain details like a mislabeled T-shirt size or bent box.

To achieve that, the team turned to customer feedback to help train a variety of ML models that can spot the difference between normal and defective items. This more detailed, labeled data was used to refine the model to detect the types of defects customers notice.

“Using that, we are able to be more targeted on the areas that we want to identify so that we can enable the models to learn more on those finer details,” Gao said.

Leveraging generative AI

Today, the science team is leveraging breakthroughs in generative AI to make product defect detection more scalable and robust. For example, the team launched a multimodal large language model (MLLM) that’s been trained to identify damage such as broken seals, torn boxes, and bent book covers, and report in plain language the damage it detects.

The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision.
Vincent Gao

“We use the MLLM to ingest and understand the images from fulfillment centers to identify damage patters with zero-shot learning capability — meaning the model can recognize something it has not seen in training. That is a significant plus when it comes to identifying damage patterns given their vast variation,” Ma explained. “Then we use the model to summarize common damage patterns, which enable us to work more upstream with our selling partners and manufactures to proactively address these issues.”

With traditional CV technologies, a model would be trained for each damage scenario – broken seal, torn box, etc. – Gao said, resulting in an unscalable ensemble of dozens to hundreds of models. The MLLM, on the other hand, is a single and scalable unified solution.

“That’s the new power we now have on top of the classic computer vision,” Shan said.

The Project P.I. team has also recently put into production a generative AI system that uses an MLLM to investigate the root cause of negative customer experiences. The system first reviews customer feedback about the issue and then analyzes product images collected by the tunnels and other data sources to confirm the root cause.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

For example, if a customer contacts Amazon because they ordered twin-size sheets but received king-size, the generative AI system cross-references that feedback with fulfillment center images. The system will ask questions such as, “Is the product label visible in the image?” “Does the label read king or twin?”

The system’s vision-language model in turn looks at the images, extracts the text from the label, and answers the questions. The LLM converts the answers into a plainspoken summary of the investigation.

“The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision,” said Gao. “We can actually have the LLM trigger the vision-language model to finish all the different verification tasks.”

Proof of concept in the fulfillment center

Since May 2022, the product quality team has been rolling out their item-level product defect detection solutions using imaging tunnels at several fulfillment centers in North America.

The results have been promising. The system has proven itself adept at sorting through the millions of items that pass through the tunnels each month and accurately identifying both expired items and issues such as wrong color or size.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

In the future, the team aims to implement near real-time product defect detection with local image processing. In this scenario, defective items could be pulled off the conveyor belt and a replacement item automatically ordered, thus eliminating disruptions to the fulfillment process.

“Ultimately, we want to be behind the scenes. We don’t need our customers to know this is going on,” said Keiko Akashi, a senior manager of product management at Amazon. “The customer should be getting a perfect order and not even know that the expired or damaged item existed.”

Sidelining defective items will also result in fewer returns, which has an added sustainability benefit, noted Gao.

“We want to intercept the wrong items or defective items,” he said. “That translates to less back and forth shipping overhead, while also delivering a better customer experience.”

New avenues for investigation

Seamless integration of these solutions across the Amazon fulfillment center network will require refinements to the AI models such as the ability to parse a potential misperception of a defect from an actual defect. For example, a “manufactured on” date might be conflated with an “expiration” date or sneakers that arrive without a shoebox are the wrong item instead of a step to reduce packaging, noted Ke.

Related content
Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

What’s more, there are challenges adapting CV models to the unique nuances of each fulfillment center and region, such as the size and color of the totes used to convey items around fulfillment centers, and the ability to extract data across a multitude of languages.

“There’s a lot of information that’s written in words,” Ke explained. “So how do we make sure that the model is picking up the right language and translating it correctly? That’s another challenge our science team is trying to solve.”

As the team has gone down this road, they’ve amassed data that shows the defects sometimes are the result of what happens outside of Amazon’s fulfillment centers.

“It could have been a carrier issue,” noted Akashi. “When customers say, ‘Hey, it came damaged,’ we can look into our outbound images and see that nothing has gone wrong. Then we can go figure out what else is going on.”

The team also plans to make data on defects more easily accessible to selling partners, Akashi added. For example, if Amazon discovered a seller accidentally put stickers with the wrong size on a product, Amazon would communicate the issue to help prevent the error from happening again.

“There’s an opportunity to get this information in front of our selling partners so they have visibility to their own inventory, and they can also have more succinct root causes to why these returns are happening,” she explained. “We’re excited that the data that we’re gathering and the AI models we are creating will benefit our customers and selling partners."

Research areas

Related content

US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of quantum processors. We are looking to hire a Quantum Research Scientist who will apply their expertise in materials characterization to the optimization of fabricated superconducting quantum devices. In this role, you are expected to lead and assist research projects that are aligned with our Center’s technical roadmap. You will develop new ideas and design experiments aimed at identifying the most promising material systems, characterization techniques, and integration processes for superconducting circuit applications. Key job responsibilities - Conduct experimental studies on the fundamental properties of superconducting, semiconducting, and dielectric thin films - Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces - Work closely with other research scientists on the Materials team to develop material processes directed toward optimizing thin film properties, controlling the surface chemistry and morphology, and impacting device performance - Identify materials properties (chemical, structural, electronic, electrical) that can be a reliable proxy for the performance of superconducting qubits and microwave resonators - Communicate engineering and scientific findings to teammates, the broader CQC and, when appropriate, publish findings in scientific journals A day in the life AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver fabricated devices for quantum computing experiments. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA
US, CA, Sunnyvale
Help re-invent how millions of people watch TV! Fire TV remains the #1 best-selling streaming media player in the US. Our goal is to be the global leader in delivering entertainment inside and outside the home, with the broadest selection of content, devices and experiences for customers. Our science team works at the intersection of Recommender Systems, Information Retrieval, Machine Learning and Natural Language Understanding. We leverage techniques from all these fields to create novel algorithms that allow our customers to engage with the right content at the right time. Our work directly contributes to making our devices delightful to use and indispensable for the household. Key job responsibilities - Drive new initiatives applying Machine Learning techniques to improve our recommendation, search and entity matching algorithms - Perform hands-on data analysis and modeling with large data sets to develop insights that increase device usage and customer experience - Design and run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them - Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences - Help attract and recruit technical talent; mentor junior scientists We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
SG, Singapore
Do you want to contribute to a team working on cutting edge technology, solve new problems that didn’t exist before, and have the ability to see the impact of your successes? Amazon is shaping the future of digital video entertainment. We seek experienced data scientists who can apply the latest research, state-of-the-art algorithms and machine learning to solve core problems in the video streaming space for Amazon. This is an exciting opportunity for candidates with a deep understanding of large data sets and structures, customer behavior and signals, machine learning algorithms and production pipelines. If you are passionate about solving complex problems in a challenging environment, we would love to talk with you. We are looking for a seasoned data scientist who can help us scale our video streaming and advertising business. He/She will develop and build machine learning models using large data-sets to improve our customer and advertiser experience, and will work closely with technology teams in deploying the models to production. He/She will work in a highly collaborative environment with some of the best engineers, marketers and product managers, and be part of a rapidly growing initiative which is going to become a huge area of growth for Amazon's Advertising business and pioneer the usage of new technology at Amazon scale. Key job responsibilities - Engage in advanced data analysis to uncover trends and correlations. Utilize statistical methods and tools to drive insightful recommendations for business strategies and process improvements. - Use the data insights to design, develop and build scalable and advanced machine learning models, algorithms and implement them in production through robust systems and architectures - Work closely with stakeholders across various departments including product, business analytics, marketing, operations and tech teams and influence business strategy - Be abreast of the advanced research and techniques in the deep-learning and artificial intelligence space, and conduct experiments to give the best output - Identify, develop, manage, and execute data analyses to uncover areas of opportunity and present business recommendations to drive cost benefit analysis and go/no-go decisions on various initiatives - Develop a roadmap and metrics to measure progress of the initiative they own - Lead initiatives for full-scale automation in collaboration with data engineering teams, enhancing data accuracy and operational efficiency We are open to hiring candidates to work out of one of the following locations: Singapore, SGP
US, WA, Seattle
Amazon brings buyers and sellers together. Our retail customers depend on us to give them access to every product at the best possible price. Our sellers depend on us to give them a platform to launch their business into every home and marketplace. Making this happen is the mission of every scientist in North America Stores (NAS) organization. To this end, the Science team is tasked with: · Building and deploying AI / ML models that lead to exponential growth of the business. · Organizing available data sources, and creating detailed dictionaries of data that can be used in future analyses. · Partnering with product teams in evaluating the financial and operational impact of new product offerings. · Partnering with science teams across other organizations to develop state of the art algorithms and models. · Carrying out independent data-backed initiatives that can be leveraged later on in the fields of network organization, costing and financial modeling of processes. · Publishing papers in both internal and external conferences / journals. In order to execute the above mandate we are on the look out for smart and qualified Applied Scientists who will own projects in partnership with product and research teams as well as operate autonomously on independent initiatives that are expected to unlock benefits in the future. A past background in Artificial Intelligence is necessary, along with advanced proficiency in programming languages such as Python and C++. Key job responsibilities As an Applied Scientist, you are able to use a range of artificial intelligence and operations research methodologies to solve challenging business problems when the solution is unclear. You have a combination of business acumen, broad knowledge of statistics, deep understanding of ML algorithms, and an analytical mindset. You thrive in a collaborative environment, and are passionate about learning. Our team utilizes a variety of AWS tools such as Redshift, Sagemaker, Lambda, S3, and EC2 with a variety of skillsets in Tabular ML, NLP, Generative AI, Forecasting, Probabilistic ML and Causal ML. You will bring knowledge in many of these domains along with your own specialties and skill-sets. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Seattle, WA, USA
US, WA, Seattle
Come be a part of a rapidly expanding $35 billion dollar global business. At Amazon Business, a fast-growing startup passionate about building solutions, we set out every day to innovate and disrupt the status quo. We stand at the intersection of tech & retail in the B2B space developing innovative purchasing and procurement solutions to help businesses and organizations thrive. At Amazon Business, we strive to be the most recognized and preferred strategic partner for smart business buying. Bring your insight, imagination and a healthy disregard for the impossible. Join us in building and celebrating the value of Amazon Business to buyers and sellers of all sizes and industries. Unlock your career potential. We are seeking a Senior Applied Scientist who has a solid background in applied Machine Learning and Data Science, deep passion for building data-driven products, ability to formulate data insights and scientific vision, and has a proven track record of executing complex projects and delivering business impact. Key job responsibilities • Data driven insights to accelerate acquisition of new members. • Grow benefits adoption based on customer segment, vertical, and drive customers to their "aha moment". • Work closely with software engineering teams to drive model implementations and new feature creations. • Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation • Advance team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Mentor junior scientists, provide technical and career development guidance. About the team The Marketing Science team applies scientific methods and research techniques to enhance our understanding of AB consumer behavior, market trends, and the effectiveness of marketing strategies. Our goal is to develop and advance theories and models that can be used to make informed decisions in marketing and to provide insights into consumer decision-making processes. Additionally, we seek to identify and explore emerging trends and technologies in marketing, and to develop innovative approaches for addressing the challenges and opportunities in the field. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you fascinated by the use of Generative AI to build an advertiser facing solution that predict problems and coach users while they solve real word problems? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the customer service space? If so, Amazon's Support Product & Services (SP&S) team has an exciting opportunity for you as an Applied Scientist. Key job responsibilities • Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the advertising support center domain. • Use Transformers and apply other NLP techniques like Sentence embeddings, Dimensionality reduction, clustering and topic modeling to identify customer intents and utterances. • Use services like AWS Lex, AWS Bedrock etc. to develop advertising facing solutions • Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful solutions. • Automating feedback loops for algorithms in production. • Setup and monitor alarms to detect anomalous data patterns and perform root cause analyses to explain and address them. • Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences. A day in the life You will work closely with a cross functional team of Software Engineers, Product Owners, Data Scientists, and Contact Center experts. You will research and investigate the latest options in industry to apply machine learning and generative AI to real world problems. You will work backwards from customer problems and collaborate with stakeholders to determine how to scale new technology and integrate with complicated help channels used by advertisers everyday. About the team SP&S team provides solutions and libraries that are leveraged by teams all across Amazon Advertising to provide timely and personalized help. The team aims to predict Advertisers problems and proactively surface intelligent guidance to customers at the right time. As a AS, you will help the team to achieve its vision of building and implementing the next generation of Contact Center technology. You will build/leverage LLMs to train them on advertising support domain knowledge and work shoulder to shoulder with stakeholders to externalize to users in novel ways. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is looking for a Senior Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase access to supply for speed and placement, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As a Senior Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Senior Applied Scientist you will: - Lead a team of scientists to innovate on state-of-the-art sourcing systems. - Set the scientific strategic vision for the team. You lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents. To help describe some of our challenges, we created a short video about SCOT at Amazon: http://bit.ly/amazon-scot About the team Supply Chain Optimization Technologies (SCOT) owns Amazon's global inventory planning systems. We decide what, when, where, and how much we should buy to meet Amazon's business goals and to make our customers happy. We decide how to place and move inventory within Amazon's fulfillment network. We do this for hundreds of millions of items and hundreds of product lines worth billions of dollars worldwide. Check our website if you are curious to learn more about the breadth of problems we tackle: https://www.amazon.science/tag/supply-chain-optimization-technologies We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA | New York, NY, USA
US, WA, Seattle
We’re building a foundation LLM for Amazon Stores that fuses general world knowledge with Amazon e-commerce domain knowledge to provide new and improved shopping experiences for our customers. We are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA