How Project P.I. helps Amazon remove imperfect products

A combination of generative AI and computer vision imaging tunnels is helping Amazon proactively improve the customer experience.

Although there are hundreds of millions of products stored in Amazon fulfillment centers, it’s very rare for customers to report shipped products as damaged. However, Amazon’s culture of customer obsession means that teams are actively working to find and remove even that relatively small number of imperfect products before they’re delivered to customers.

Related content
Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.

One of those teams includes scientists who are using generative AI and computer vision, powered by AWS services such as Amazon Bedrock and Amazon SageMaker, to help spot, isolate, and remove imperfect items.

Inside Amazon fulfillment centers across North America, products ranging from dog food and phone cases to T-shirts and books pass through imaging tunnels for a wide variety of uses, including sorting products based on their intended destination. Those use cases have been extended to include the use of artificial intelligence to inspect individual items for defects.

For example, optical character recognition (OCR) — the process that converts an image of text into a machine-readable text format — checks expiration dates on product packaging to ensure expired items are not sent to customers. Computer vision (CV) models — trained with reference images from the product catalog and actual images of products sent to customers — pore over color and monochrome images for signs of product damage such as bent book covers.

Amaozn Science Project P.I. Private Investigator

Additionally, a recent breakthrough solution leverages the ability of generative AI to process multimodal information by synthesizing evidence from images captured during the Amazon fulfillment process and combining it with written customer feedback to trigger even faster corrective actions.

This effort, referred to collectively as Project P.I., which stands for “private investigator”, encompasses the team’s vision of using a detective-like toolset to uncover both defects and, wherever possible, their cause — to address the issue at its root before a product reaches the customer.

"We want to equip ourselves with the most powerful, scalable tools and levers to help us protect our customers’ trust,” said Pingping Shan, director of perfect order experience at Amazon.

Defect detection

Project P.I. is an outgrowth of Amazon’s product quality program, and the tools and systems developed by the team’s scientists include machine learning models that assist selling partners with listing products with accurate information.

“The product quality team is constantly looking for ways to both reduce the burden on the sellers and to proactively verify the condition of inventory in fulfillment centers,” Shan said.

An early solution was an OCR model that checks the labeling information when inventory arrives and compares that to the information in Amazon’s database. If a mismatches occurs — such as a pallet of dog food with an earlier sell-by date than the date in the database — the team can isolate and inspect the pallet and prevent any expired products from reaching the customer.

When an item-level defect is detected, Amazon takes several steps to resolve the issue, including investigating whether the item is one in a defective batch and, if so, isolating the batch from the rest of the items, explained Angela Ke, a senior product manager.

“We want to make sure that customers don’t have to experience issues with product quality. That’s really the vision of Project P.I.,” she said. “We want to get it right for customers the first time, so we want to inspect the products before they leave our fulfillment center, and we incorporate AI to streamline the workflow.”

Customer feedback aids model training

Despite the team’s best efforts, sometimes product quality issues only become known after an item has been delivered to customers, noted Mark Ma, a principal product manager. Those arise in cases where customers have filed a return noting the issue. In those instances, the team tracks down the batch the product came from, verifies the issue, removes those items from fulfillment center shelves, issues refunds, and communicates the issue to the seller.

“We know that that correcting the defects after they happen is not the best way to protect and improve the customer experience. That’s why we started exploring what kind of data we can gather further upstream,” he said. Those discussions eventually led to leveraging the tunnel images to better identify products with defects and take surgical and proactive action to address them — before they’re packaged and shipped.

Related content
DocFormerV2 makes sense of documents using local features, outperforming much bigger models.

One of the early challenges with that approach entailed training CV models to correctly identify defects, noted Vincent Gao, a senior science manager on the product quality team.

“It’s like finding a needle in a haystack,” he said. “We needed a model that could accurately identify those among all the other normal products. Otherwise, we could be finding a lot of false positives making the fulfillment process inefficient.”

Gao’s team turned to an ensemble approach that combines self-supervised models with supervised transformer models —a neural-network architecture that uses attention mechanisms to improve performance on machine learning tasks — to spot the difference between normal and defective items. By learning what the “correct” product looks like from fulfillment center images associated with normal orders, the model can compare an item on its way to be packaged against its “normal” image and provide a measurement of how much it differs.

This approach allowed the team to more reliably spot obvious product defects, such as a book with a torn cover or an empty canister of tennis balls, yet it still couldn’t account for some of the fine grain details like a mislabeled T-shirt size or bent box.

To achieve that, the team turned to customer feedback to help train a variety of ML models that can spot the difference between normal and defective items. This more detailed, labeled data was used to refine the model to detect the types of defects customers notice.

“Using that, we are able to be more targeted on the areas that we want to identify so that we can enable the models to learn more on those finer details,” Gao said.

Leveraging generative AI

Today, the science team is leveraging breakthroughs in generative AI to make product defect detection more scalable and robust. For example, the team launched a multimodal large language model (MLLM) that’s been trained to identify damage such as broken seals, torn boxes, and bent book covers, and report in plain language the damage it detects.

The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision.
Vincent Gao

“We use the MLLM to ingest and understand the images from fulfillment centers to identify damage patters with zero-shot learning capability — meaning the model can recognize something it has not seen in training. That is a significant plus when it comes to identifying damage patterns given their vast variation,” Ma explained. “Then we use the model to summarize common damage patterns, which enable us to work more upstream with our selling partners and manufactures to proactively address these issues.”

With traditional CV technologies, a model would be trained for each damage scenario – broken seal, torn box, etc. – Gao said, resulting in an unscalable ensemble of dozens to hundreds of models. The MLLM, on the other hand, is a single and scalable unified solution.

“That’s the new power we now have on top of the classic computer vision,” Shan said.

The Project P.I. team has also recently put into production a generative AI system that uses an MLLM to investigate the root cause of negative customer experiences. The system first reviews customer feedback about the issue and then analyzes product images collected by the tunnels and other data sources to confirm the root cause.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

For example, if a customer contacts Amazon because they ordered twin-size sheets but received king-size, the generative AI system cross-references that feedback with fulfillment center images. The system will ask questions such as, “Is the product label visible in the image?” “Does the label read king or twin?”

The system’s vision-language model in turn looks at the images, extracts the text from the label, and answers the questions. The LLM converts the answers into a plainspoken summary of the investigation.

“The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision,” said Gao. “We can actually have the LLM trigger the vision-language model to finish all the different verification tasks.”

Proof of concept in the fulfillment center

Since May 2022, the product quality team has been rolling out their item-level product defect detection solutions using imaging tunnels at several fulfillment centers in North America.

The results have been promising. The system has proven itself adept at sorting through the millions of items that pass through the tunnels each month and accurately identifying both expired items and issues such as wrong color or size.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

In the future, the team aims to implement near real-time product defect detection with local image processing. In this scenario, defective items could be pulled off the conveyor belt and a replacement item automatically ordered, thus eliminating disruptions to the fulfillment process.

“Ultimately, we want to be behind the scenes. We don’t need our customers to know this is going on,” said Keiko Akashi, a senior manager of product management at Amazon. “The customer should be getting a perfect order and not even know that the expired or damaged item existed.”

Sidelining defective items will also result in fewer returns, which has an added sustainability benefit, noted Gao.

“We want to intercept the wrong items or defective items,” he said. “That translates to less back and forth shipping overhead, while also delivering a better customer experience.”

New avenues for investigation

Seamless integration of these solutions across the Amazon fulfillment center network will require refinements to the AI models such as the ability to parse a potential misperception of a defect from an actual defect. For example, a “manufactured on” date might be conflated with an “expiration” date or sneakers that arrive without a shoebox are the wrong item instead of a step to reduce packaging, noted Ke.

Related content
Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

What’s more, there are challenges adapting CV models to the unique nuances of each fulfillment center and region, such as the size and color of the totes used to convey items around fulfillment centers, and the ability to extract data across a multitude of languages.

“There’s a lot of information that’s written in words,” Ke explained. “So how do we make sure that the model is picking up the right language and translating it correctly? That’s another challenge our science team is trying to solve.”

As the team has gone down this road, they’ve amassed data that shows the defects sometimes are the result of what happens outside of Amazon’s fulfillment centers.

“It could have been a carrier issue,” noted Akashi. “When customers say, ‘Hey, it came damaged,’ we can look into our outbound images and see that nothing has gone wrong. Then we can go figure out what else is going on.”

The team also plans to make data on defects more easily accessible to selling partners, Akashi added. For example, if Amazon discovered a seller accidentally put stickers with the wrong size on a product, Amazon would communicate the issue to help prevent the error from happening again.

“There’s an opportunity to get this information in front of our selling partners so they have visibility to their own inventory, and they can also have more succinct root causes to why these returns are happening,” she explained. “We’re excited that the data that we’re gathering and the AI models we are creating will benefit our customers and selling partners."

Research areas

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.