How Project P.I. helps Amazon remove imperfect products

A combination of generative AI and computer vision imaging tunnels is helping Amazon proactively improve the customer experience.

Although there are hundreds of millions of products stored in Amazon fulfillment centers, it’s very rare for customers to report shipped products as damaged. However, Amazon’s culture of customer obsession means that teams are actively working to find and remove even that relatively small number of imperfect products before they’re delivered to customers.

Related content
Using causal random forests and Bayesian structural time series to extrapolate from sparse data ensures that customers get the most useful information as soon as possible.

One of those teams includes scientists who are using generative AI and computer vision, powered by AWS services such as Amazon Bedrock and Amazon SageMaker, to help spot, isolate, and remove imperfect items.

Inside Amazon fulfillment centers across North America, products ranging from dog food and phone cases to T-shirts and books pass through imaging tunnels for a wide variety of uses, including sorting products based on their intended destination. Those use cases have been extended to include the use of artificial intelligence to inspect individual items for defects.

For example, optical character recognition (OCR) — the process that converts an image of text into a machine-readable text format — checks expiration dates on product packaging to ensure expired items are not sent to customers. Computer vision (CV) models — trained with reference images from the product catalog and actual images of products sent to customers — pore over color and monochrome images for signs of product damage such as bent book covers.

Amaozn Science Project P.I. Private Investigator

Additionally, a recent breakthrough solution leverages the ability of generative AI to process multimodal information by synthesizing evidence from images captured during the Amazon fulfillment process and combining it with written customer feedback to trigger even faster corrective actions.

This effort, referred to collectively as Project P.I., which stands for “private investigator”, encompasses the team’s vision of using a detective-like toolset to uncover both defects and, wherever possible, their cause — to address the issue at its root before a product reaches the customer.

"We want to equip ourselves with the most powerful, scalable tools and levers to help us protect our customers’ trust,” said Pingping Shan, director of perfect order experience at Amazon.

Defect detection

Project P.I. is an outgrowth of Amazon’s product quality program, and the tools and systems developed by the team’s scientists include machine learning models that assist selling partners with listing products with accurate information.

“The product quality team is constantly looking for ways to both reduce the burden on the sellers and to proactively verify the condition of inventory in fulfillment centers,” Shan said.

An early solution was an OCR model that checks the labeling information when inventory arrives and compares that to the information in Amazon’s database. If a mismatches occurs — such as a pallet of dog food with an earlier sell-by date than the date in the database — the team can isolate and inspect the pallet and prevent any expired products from reaching the customer.

When an item-level defect is detected, Amazon takes several steps to resolve the issue, including investigating whether the item is one in a defective batch and, if so, isolating the batch from the rest of the items, explained Angela Ke, a senior product manager.

“We want to make sure that customers don’t have to experience issues with product quality. That’s really the vision of Project P.I.,” she said. “We want to get it right for customers the first time, so we want to inspect the products before they leave our fulfillment center, and we incorporate AI to streamline the workflow.”

Customer feedback aids model training

Despite the team’s best efforts, sometimes product quality issues only become known after an item has been delivered to customers, noted Mark Ma, a principal product manager. Those arise in cases where customers have filed a return noting the issue. In those instances, the team tracks down the batch the product came from, verifies the issue, removes those items from fulfillment center shelves, issues refunds, and communicates the issue to the seller.

“We know that that correcting the defects after they happen is not the best way to protect and improve the customer experience. That’s why we started exploring what kind of data we can gather further upstream,” he said. Those discussions eventually led to leveraging the tunnel images to better identify products with defects and take surgical and proactive action to address them — before they’re packaged and shipped.

Related content
DocFormerV2 makes sense of documents using local features, outperforming much bigger models.

One of the early challenges with that approach entailed training CV models to correctly identify defects, noted Vincent Gao, a senior science manager on the product quality team.

“It’s like finding a needle in a haystack,” he said. “We needed a model that could accurately identify those among all the other normal products. Otherwise, we could be finding a lot of false positives making the fulfillment process inefficient.”

Gao’s team turned to an ensemble approach that combines self-supervised models with supervised transformer models —a neural-network architecture that uses attention mechanisms to improve performance on machine learning tasks — to spot the difference between normal and defective items. By learning what the “correct” product looks like from fulfillment center images associated with normal orders, the model can compare an item on its way to be packaged against its “normal” image and provide a measurement of how much it differs.

This approach allowed the team to more reliably spot obvious product defects, such as a book with a torn cover or an empty canister of tennis balls, yet it still couldn’t account for some of the fine grain details like a mislabeled T-shirt size or bent box.

To achieve that, the team turned to customer feedback to help train a variety of ML models that can spot the difference between normal and defective items. This more detailed, labeled data was used to refine the model to detect the types of defects customers notice.

“Using that, we are able to be more targeted on the areas that we want to identify so that we can enable the models to learn more on those finer details,” Gao said.

Leveraging generative AI

Today, the science team is leveraging breakthroughs in generative AI to make product defect detection more scalable and robust. For example, the team launched a multimodal large language model (MLLM) that’s been trained to identify damage such as broken seals, torn boxes, and bent book covers, and report in plain language the damage it detects.

The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision.
Vincent Gao

“We use the MLLM to ingest and understand the images from fulfillment centers to identify damage patters with zero-shot learning capability — meaning the model can recognize something it has not seen in training. That is a significant plus when it comes to identifying damage patterns given their vast variation,” Ma explained. “Then we use the model to summarize common damage patterns, which enable us to work more upstream with our selling partners and manufactures to proactively address these issues.”

With traditional CV technologies, a model would be trained for each damage scenario – broken seal, torn box, etc. – Gao said, resulting in an unscalable ensemble of dozens to hundreds of models. The MLLM, on the other hand, is a single and scalable unified solution.

“That’s the new power we now have on top of the classic computer vision,” Shan said.

The Project P.I. team has also recently put into production a generative AI system that uses an MLLM to investigate the root cause of negative customer experiences. The system first reviews customer feedback about the issue and then analyzes product images collected by the tunnels and other data sources to confirm the root cause.

Related content
Novel architectures and carefully prepared training data enable state-of-the-art performance.

For example, if a customer contacts Amazon because they ordered twin-size sheets but received king-size, the generative AI system cross-references that feedback with fulfillment center images. The system will ask questions such as, “Is the product label visible in the image?” “Does the label read king or twin?”

The system’s vision-language model in turn looks at the images, extracts the text from the label, and answers the questions. The LLM converts the answers into a plainspoken summary of the investigation.

“The LLM is working side-by-side with the visual language model to analyze data from different sources and modalities to help us make a decision,” said Gao. “We can actually have the LLM trigger the vision-language model to finish all the different verification tasks.”

Proof of concept in the fulfillment center

Since May 2022, the product quality team has been rolling out their item-level product defect detection solutions using imaging tunnels at several fulfillment centers in North America.

The results have been promising. The system has proven itself adept at sorting through the millions of items that pass through the tunnels each month and accurately identifying both expired items and issues such as wrong color or size.

Related content
First model to work across a wide range of products uses a second U-Net encoder to capture fine-grained product details.

In the future, the team aims to implement near real-time product defect detection with local image processing. In this scenario, defective items could be pulled off the conveyor belt and a replacement item automatically ordered, thus eliminating disruptions to the fulfillment process.

“Ultimately, we want to be behind the scenes. We don’t need our customers to know this is going on,” said Keiko Akashi, a senior manager of product management at Amazon. “The customer should be getting a perfect order and not even know that the expired or damaged item existed.”

Sidelining defective items will also result in fewer returns, which has an added sustainability benefit, noted Gao.

“We want to intercept the wrong items or defective items,” he said. “That translates to less back and forth shipping overhead, while also delivering a better customer experience.”

New avenues for investigation

Seamless integration of these solutions across the Amazon fulfillment center network will require refinements to the AI models such as the ability to parse a potential misperception of a defect from an actual defect. For example, a “manufactured on” date might be conflated with an “expiration” date or sneakers that arrive without a shoebox are the wrong item instead of a step to reduce packaging, noted Ke.

Related content
Amazon teams up with RTI International, Schlumberger, and International Paper on a project selected by the US Department of Energy to scale carbon capture and storage for the pulp and paper industry.

What’s more, there are challenges adapting CV models to the unique nuances of each fulfillment center and region, such as the size and color of the totes used to convey items around fulfillment centers, and the ability to extract data across a multitude of languages.

“There’s a lot of information that’s written in words,” Ke explained. “So how do we make sure that the model is picking up the right language and translating it correctly? That’s another challenge our science team is trying to solve.”

As the team has gone down this road, they’ve amassed data that shows the defects sometimes are the result of what happens outside of Amazon’s fulfillment centers.

“It could have been a carrier issue,” noted Akashi. “When customers say, ‘Hey, it came damaged,’ we can look into our outbound images and see that nothing has gone wrong. Then we can go figure out what else is going on.”

The team also plans to make data on defects more easily accessible to selling partners, Akashi added. For example, if Amazon discovered a seller accidentally put stickers with the wrong size on a product, Amazon would communicate the issue to help prevent the error from happening again.

“There’s an opportunity to get this information in front of our selling partners so they have visibility to their own inventory, and they can also have more succinct root causes to why these returns are happening,” she explained. “We’re excited that the data that we’re gathering and the AI models we are creating will benefit our customers and selling partners."

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques