A quick guide to Amazon's 40+ papers at EMNLP 2022

Familiar topics like information extraction and question answering share space with robotics and geolocation learning, and query rewriting emerges as a dynamic area of research.

Amazon’s more than 40 papers at this year’s Conference on Empirical Methods in Natural-Language Processing (EMNLP) — including papers accepted to EMNLP’s new industry track — cover some familiar topics, such as natural-language understanding and question answering. But they also wander farther afield, taking in such disparate subjects as robotics and geospatial learning — and two of the papers concern pun generation.

Query rewriting, whose applications include self-learning and reference resolution, has emerged as a dynamic area of research at Amazon, with five related papers at this year’s EMNLP. And several papers explore the burgeoning field of prompt engineering, or priming large language models to produce the desired types of output.

Below is a quick guide to Amazon’s EMNLP papers, both academic track and industry track.

Continual learning

Iterative stratified testing and measurement for automated model updates
Elizabeth Dekeyser, Nicholas Comment, Shermin Pei, Rajat Kumar, Shruti Rai, Fengtao Wu, Lisa Haverty, Kanna Shimizu

Towards need-based spoken language understanding model updates: What have we learned?
Quynh Do, Judith Gaspers, Daniil Sorokin, Patrick Lehnen

Unsupervised training data reweighting for natural language understanding with local distribution approximation
Jose Garrido Ramas, Thu Le, Bei Chen, Manoj Kumar, Kay Rottmann

Dialogue

retrieval-based-response.png
"Deploying a retrieval based response model for task oriented dialogues" proposes a model in which cross-attention layers learn the semantic correlations between history, profile features, and candidate responses, and a score function computes and ranks the candidate responses.

Deploying a retrieval based response model for task oriented dialogues
Lahari Poddar, Gyuri Szarvas, Cheng Wang, Georges Balazs, Pavel Danchenko, Patrick Ernst

Dialogue meaning representation for task-oriented dialogue systems
Xiangkun Hu, Junqi Dai, Hang Yan, Yi Zhang, Qipeng Guo, Xipeng Qiu, Zheng Zhang

Injecting domain knowledge in language models for task-oriented dialogue systems
Denis Emelin, Daniele Bonadiman, Sawsan Alqahtani, Yi Zhang, Saab Mansour

Evaluation

GEMv2: Multilingual NLG benchmarking in a single line of code
Sebastian Gehrmann, Abhik Bhattacharjee, Abinaya Mahendiran, Alex Wang, Alexandros Papangelis, Aman Madaan, Angelina McMillan-Major, Anna Shvets, Ashish Upadhyay, Bernd Bohnet, Bingsheng Yao, Bryan Wilie, Chandra Bhagavatula, Chaobin You, Craig Thomson, Cristina Garbacea, Dakuo Wang, Daniel Deutsch, Deyi Xiong, Di Jin, Dimitra Gkatzia, Dragomir Radev, Elizabeth Clark, Esin Durmus, Faisal Ladhak, Filip Ginter, Genta Indra Winata, Hendrik Strobelt, Jekaterina Novikova, Jenna Kanerva, Jenny Chim, Jiawei Zhou, Jordan Clive, Joshua Maynez, João Sedoc, Juraj Juraska, Kaustubh Dhole, Khyathi Raghavi Chandu, Laura Perez-Beltrachini, Leonardo F. R. Ribeiro, Lewis Tunstall, Li Zhang, Mahima Pushkarna, Mathias Creutz, Michael White, Mihir Sanjay Kale, Moussa Kamal Eddine, Nico Daheim, Nishant Subramani, Ondrej Dusek, Paul Pu Liang, Pawan Sasanka Ammanamanch, Qi Zhu, Ratish Puduppully, Reno Kriz, Rifat Shahriyar, Saad Mahamood, Salomey Osei, Samuel Cahyawijaya, Sanja Štajner, Sebastien Montella, Shailza Jolly, Simon Mille, Tianhao Shen, Tosin Adewumi, Vikas Raunak, Vipul Raheja, Vitaly Nikolaev, Vivian Tsai, Yacine Jernite, Ying Xu, Yisi Sang, Yixin Liu, Yufang Hou

Fact verification

Fact checking machine generated text with dependency trees
Alex Estes, Nikhita Vedula, Marcus D. Collins, Matthew Cecil, Oleg Rokhlenko

Fact checking.png
The method proposed in "Fact checking machine generated text with dependency trees" identifies entity attributes from the dependency parse tree of an input claim whose factuality is to be assessed.

Fairness

MT-GenEval: A counterfactual and contextual dataset for evaluating gender accuracy in machine translation
Anna Currey, Maria Nadejde, Raghavendra Pappagari, Mia Mayer, Stanislas Lauly, Xing Niu, Benjamin Hsu, Georgiana Dinu

Humor

Context-situated pun generation
Jiao Sun, Anjali Narayan-Chen, Shereen Oraby, Shuyang Gao, Tagyoung Chung, Jing Huang, Yang Liu, Nanyun Peng

ExPUNations: Augmenting puns with keywords and explanations
Jiao Sun, Anjali Narayan-Chen, Shereen Oraby, Alessandra Cervone, Tagyoung Chung, Jing Huang, Yang Liu, Nanyun Peng

Information extraction

A hybrid approach to cross-lingual product review summarization
Saleh Soltan, Victor Soto, Ke Tran, Wael Hamza

Ask-and-Verify: Span candidate generation and verification for attribute value extraction
Yifan Ding, Yan Liang, Nasser Zalmout, Xian Li, Christan Grant, Tim Weninger

DORE: Document ordered relation extraction based on generative framework
Qipeng Guo, Yuqing Yang, Hang Yan, Xipeng Qiu, Zheng Zhang

DORE.png
The method proposed in "DORE: Document ordered relation extraction based on generative framework" identifies multiple instances of the same entity in an input document and builds a relation matrix that records relations between entities.

Learning to revise references for faithful summarization
Griffin Adams, Han-Chin Shing, Qing Sun, Christopher Winestock, Kathleen McKeown, Noémie Elhadad

Prototype-representations for training data filtering in weakly-supervised information extraction
Nasser Zalmout, Xian Li

Information retrieval

Accelerating learned sparse indexes via term impact decomposition
Joel Mackenzie, Antonio Mallia, Alistair Moffat, Matthias Petri

Machine translation impact in e-commerce multilingual search
Bryan Zhang, Amita Misra

Knowledge distillation

Distilling multilingual transformers into CNNs for scalable intent classification
Besnik Fetahu, Akash Veeragouni, Oleg Rokhlenko, Shervin Malmasi

Knowledge distillation transfer sets and their impact on downstream NLU tasks
Charith Peris, Lizhen Tan, Thomas Gueudre, Turan Gojayev, Pan Wei, Gokmen Oz

Machine learning

Calibrating imbalanced classifiers with focal loss: An empirical study
Cheng Wang, Georges Balazs, Gyuri Szarvas, Patrick Ernst, Lahari Poddar, Pavel Danchenko

Model adaptation

Meta-learning the difference: Preparing large language models for efficient adaptation
Zejiang Hou, Julian Salazar, George Polovets

Open world.png
In "Open world classification with adaptive negative samples", Amazon researchers propose a new method for discriminating known and open (unknown) categories of data. This figure compares their approach (d) to ordinary supervised learning (a) and an adaptive-decision-boundary method (c).

Open world classification with adaptive negative samples
Ke Bai, Guoyin Wang, Jiwei Li, Sunghyun Park, Sungjin Lee, Puyang Xu, Ricardo Henao, Lawrence Carin

Multimodal interaction

Multimodal context carryover
Prashan Wanigasekara, Nalin Gupta, Fan Yang, Emre Barut, Zeynab Raeesy, Kechen Qin, Stephen Rawls, Xinyue Liu, Chengwei Su, Spurthi Sandiri

Natural-language processing

McPhraSy: Multi context phrase similarity and clustering
Amir DN Cohen, Hila Gonen, Ori Shapira, Ran Levy, Yoav Goldberg

Unsupervised syntactically controlled paraphrase generation with abstract meaning representations
Kuan-Hao Huang, Varun Iyer, Anoop Kumar, Sriram Venkatapathy, Kai-Wei Chang, Aram Galstyan

Natural-language understanding

Improving large-scale conversational assistants using model interpretation based training sample selection
Stefan Schroedl, Manoj Kumar, Kiana Hajebi, Morteza Ziyadi, Sriram Venkatapathy, Anil Ramakrishna, Rahul Gupta, Pradeep Natarajan

Improving text-to-SQL semantic parsing with fine-grained query understanding
Jun Wang, Patrick Ng, Alexander Hanbo Li, Jiarong Jiang, Zhiguo Wang, Ramesh Nallapati, Bing Xiang, Sudipta Sengupta

Learning geolocations for cold-start and hard-to-resolve addresses via deep metric learning
Govind, Saurabh Sohoney

Geolocation.png
"Learning geolocations for cold-start and hard-to-resolve addresses via deep metric learning" proposes a way to use deep metric learning on addresses to capture geospatial distance semantics.

Prompt engineering

DynaMaR: Dynamic prompt with mask token representation
Xiaodi Sun, Sunny Rajagopalan, Priyanka Nigam, Weiyi Lu, Yi Xu, Iman Keivanloo, Belinda Zeng, Trishul Chilimbi

Inducer-tuning: Connecting prefix-tuning and adapter-tuning
Yifan Chen, Devamanyu Hazarika, Mahdi Namazifar, Yang Liu, Di Jin, Dilek Hakkani-Tür

Query rewriting

CGF.png
In "CGF: Constrained generation framework for query rewriting in conversational AI", Amazon researchers use tries — trees in which each node extends a text by one word — to constrain the outputs of a model that generates query rewrites.

CGF: Constrained generation framework for query rewriting in conversational AI
Jie Hao, Yang Liu, Xing Fan, Saurabh Gupta, Saleh Soltan, Rakesh Chada, Pradeep Natarajan, Edward Guo, Gokhan Tur

CycleKQR: Unsupervised bidirectional keyword question rewriting
Andrea Iovine, Anjie Fang, Besnik Fetahu, Jie Zhao, Oleg Rokhlenko, Shervin Malmasi

PAIGE: Personalized adaptive interactions graph encoder for query rewriting in dialogue systems
Daniel Bis, Saurabh Gupta, Jie Hao, Xing Fan, Edward Guo

PENTATRON: PErsonalized coNText-aware transformer for retrieval-based cOnversational uNderstanding
Niranjan Uma Naresh, Ziyan Jiang, Ankit, Sungjin Lee, Jie Hao, Xing Fan, Edward Guo

Reinforced question rewriting for conversational question answering
Zhiyu Chen, Jie Zhao, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, Shervin Malmasi

Question answering

Ensemble transformer for efficient and accurate ranking tasks: An application to question answering systems
Yoshitomo Matsubara, Luca Soldaini, Eric Lind, Alessandro Moschitti

FocusQA: Open-domain question answering with a context in focus
Gianni Barlacchi, Ivano Lauriola, Alessandro Moschitti, Marco Del Tredici, Xiaoyu Shen, Thuy Vu, Bill Byrne, Adrià de Gispert

Knowledge transfer from answer ranking to answer generation
Matteo Gabburo, Rik Koncel-Kedziorski, Siddhant Garg, Luca Soldaini, Alessandro Moschitti

Pre-training transformer models with sentence-level objectives for answer sentence selection
Luca Di Liello, Siddhant Garg, Luca Soldaini, Alessandro Moschitti

RLET: A reinforcement learning based approach for explainable QA with entailment trees
Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Yue Zhang, Xipeng Qiu, Zheng Zhang

Robotics

ALFRED-L: Investigating the role of language for action learning in interactive visual environments
Arjun R. Akula, Spandana Gella, Aishwarya Padmakumar, Mahdi Namazifar, Mohit Bansal, Jesse Thomason, Dilek Hakkani-Tür

ALFRED-L.png
"ALFRED-L: Investigating the role of language for action learning in interactive visual environments" proposes a new test split to the ALFRED benchmark for embodied-task completion. The test split — ALFRED-L — includes instructions that an agent backtrack to known reference positions along its trajectory, to evaluate whether it can remember their locations.

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.