Top row, left to right: Xu Chen, McMinn Endowed Research Professor of Mechanical Engineering; Karen Leung, assistant professor, aeronautics and astronautics; Jeffrey Lipton, assistant professor of mechanical engineering; bottom row, left to right: Adriana Schulz, assistant professor of computer science and engineering; Rajesh P. N. Rao, CJ and Elizabeth Hwang Professor of Computer Science; and Chiwei Yan, assistant professor, industrial and systems engineering.
The UW + Amazon Science Hub inaugural research-award recipients are (top row, left to right): Xu Chen, McMinn Endowed Research Professor of Mechanical Engineering; Karen Leung, assistant professor, aeronautics and astronautics; Jeffrey Lipton, assistant professor of mechanical engineering; (bottom row, left to right): Adriana Schulz, assistant professor of computer science and engineering; Rajesh P. N. Rao, CJ and Elizabeth Hwang Professor of Computer Science; and Chiwei Yan, assistant professor, industrial and systems engineering.

Amazon and University of Washington announce inaugural Science Hub faculty research awards

Six UW professors will advance artificial intelligence and robotics research with new grants.

The UW + Amazon Science Hub, founded in February 2022 and housed in the University of Washington College of Engineering, has announced the recipients of its inaugural set of faculty research awards to advance artificial intelligence (AI) and robotics.

Related content
The collaboration will focus on advancing innovation in core robotics and AI technologies and their applications.

The projects were selected through a joint review process between the UW Advisory Group and Amazon. Each recipient will each receive up to $100,000 in research funding from Amazon, and each year-long project will address a real-world, cutting-edge challenge in AI or robotics.

Below is background on this year’s recipients, and their research projects.

Xu Chen, McMinn Endowed Research Professor of Mechanical Engineering: “Adaptive Grasping and Object Manipulation using Visual and Tactile Feedback”

“The project aims to enable industrial collaborative robots with the manipulation intelligence that humans employ to grasp and manipulate objects with heterogeneous feedback. Humans use a combination of visual and tactile sensing to grasp and manipulate objects. Previously, numerous studies have proposed purely visual or purely tactile feedback algorithms to grasp objects. With recent advances of perception, computation, and sensor fusion, this project will integrate visual and tactile feedback to grasp and manipulate objects. The geometry, material and loading of the objects will not be known a priori. The study will use a UR5e robot fitted with a 2D stereo camera and a parallel gripper with pressure sensors for experimental validation of grasping and manipulation algorithms.”

Karen Leung, assistant professor, aeronautics and astronautics: “Shifting From Reactive to Proactive Safety: Legible Contingency Planning for Prosocial Interactions

“The goal of this project is to innovate towards a proactive safety framework for robot planning and control in multi-agent interactive warehouse navigation settings, a stark departure from typical reactive safety paradigms. The key insight is to develop legible robot motion to induce prosocial human-robot behaviors (i.e., taking actions to benefit the group), resulting in (i) safe and seamless human-robot interactions, and (ii) a reduction in the frequent use of reactive safety controllers which degrade performance and may damage the robot or cargo.”

Jeffrey Lipton, assistant professor of mechanical engineering: “Dynamic Stiffness for Rapid Gripping Using Metamaterials”

“Vacuum adhesion using suction cups is a vitally important method for grasping objects in an Amazon warehouse. These systems use extending rods to move the cups away from an industrial robotic arm’s wrist down to the target object. This causes two problems: firstly, the rigid connection between the object and arm makes the suction cups susceptible to pealing and secondly it requires the large arms to gimbal to pick up items. This gimbaling motion takes up space and slows down the picking and stowing process. We will solve these problems by generating a new type of end effector based on mechanical metamaterials known as handed shearing auxetics (H.S.A.). H.S.As are patterns on hollow tubes that can convert rotation directly into extending or bending movements and can dynamically change stiffness. We will develop a rapidly articulable wrist and validate it on grasping tasks to compare the pick time and space used with those of a traditional robot arm. Next, we will learn to use the dynamic stiffness of the H.S.A to perform picking operations with higher reliability. Finally, we will develop an extendable flex shaft for driving multistage H.S.A. systems. Longer term this will lay the foundation for low-cost and safe arms made entirely from metamaterials for picking and stowing tasks.”

Adriana Schulz, assistant professor of computer science and engineering: “Design-Aware 3D Scene Interpretation”

“Though image-based recognition and reconstruction is a well-studied problem, recovering an accurate 3D model from images remains challenging, particularly for scenarios with clutter and occlusions. Typical methods rely on retrieval from a database and are intractable when 3D models of the items are not available. In this proposal, we uniquely observe that manufacturability defines and constrains the design space for man-made objects and can be leveraged to develop novel reconstruction methods. Using design for manufacturing as an underlying representation, we can reduce the search space to models that can be represented in Computer-Aided-Design (CAD) systems, making the inverse reconstruction problem easier to manage. We demonstrate how this approach can improve local precision in 3D reconstruction to enable robust robotic manipulation.”

Rajesh P. N. Rao, CJ and Elizabeth Hwang Professor of Computer Science: “Self-Supervised Learning of Part-Whole Hierarchies for Semantic Scene Understanding, with Applications to Representing Densely Packed Bins and Mobile Robotics

“A key problem in automating the semantic understanding of objects, scenes and environments is learning compositional, part-whole representations from images and videos. We propose a new deep learning framework called Active Predictive Coding Networks (APCNs) for solving this important problem. Inspired by emerging ideas in neuroscience and cognitive science, APCNs utilize hierarchical reference frames and action-conditional predictions to learn versatile spatiotemporal representations of a scene that are compositional, generative, and probabilistic. By combining reinforcement learning and active inference for inferring actions with self-supervised learning of interpretable world models, APCNs lend themselves naturally to applications such as representing and manipulating densely packed bins and modeling the dynamically changing environments of mobile robots.”

Chiwei Yan, assistant professor, industrial and systems engineering: “Fleet Planning of Autonomous Cart Systems in Modern Fulfillment Centers

“Modern fulfillment centers are replacing traditional conveyor belt systems, forklifts or automated guided vehicles with multi-purpose autonomous carts. These autonomous carts are designed to work alongside human and automatically transport stock keeping units (SKUs) from an origin location to a destination location, without following a fixed path, which allows them to be flexibly deployed in existing facilities without significant infrastructure changes. This proposal concerns the fleet planning problem of deploying such autonomous cart systems in practice — how many carts are needed to achieve certain throughput rate given the layout and service capacity of the facility, and what are the resulting key performance measures such as cart utilization rate and waiting times. This decision is complex because of a multitude of conflicting factors such as the dichotomy of cart density on service availability and congestion, which requires dedicated analytics capabilities. We propose an array of novel, simple and practical models that can guide practitioners to a reliable initial estimate of fleet sizing, before running expensive field experiments or building customized simulation software.”

The UW + Amazon Science Hub also supports doctoral fellowships and sponsors longer-term research and development aligned with Amazon interests. For more information on events and activities, visit the official site.

Research areas

Related content

  • Staff writer
    December 29, 2025
    From foundation model safety frameworks and formal verification at cloud scale to advanced robotics and multimodal AI reasoning, these are the most viewed publications from Amazon scientists and collaborators in 2025.
  • Staff writer
    December 29, 2025
    From quantum computing breakthroughs and foundation models for robotics to the evolution of Amazon Aurora and advances in agentic AI, these are the posts that captured readers' attention in 2025.
  • October 15, 2025
    The collaboration will advance research in generative AI, robotics, natural language processing and cloud computing while fostering innovation in foundational and emerging technologies.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.