Customer-obsessed science
Research areas
-
November 28, 20254 min readLarge language models are increasing the accuracy, reliability, and consistency of the product catalogue at scale.
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
-
October 2, 20253 min read
Featured news
-
EMNLP 20222022Phrase similarity is a key component of many NLP applications. Current phrase similarity methods focus on embedding the phrase itself and use the phrase context only during training of the pretrained model. To better leverage the information in the context, we propose McPhraSy (Multi-context Phrase Similarity), a novel algorithm for estimating the similarity of phrases based on multiple contexts. At inference
-
SIGDIAL 20222022While rich, open-domain textual data are generally available and may include interesting phenomena (humor, sarcasm, empathy, etc.) most are designed for language processing tasks, and are usually in a non-conversational format. In this work, we take a step towards automatically generating conversational data using Generative Conversational Networks, aiming to benefit from the breadth of available language
-
EMNLP 20222022Dialogue meaning representation formulates natural language utterance semantics in their conversational context in an explicit and machine-readable form. Previous work typically follows the intent-slot framework, which is easy for annotation yet limited in scalability for complex linguistic expressions. A line of works alleviates the representation issue by introducing hierarchical structures but challenging
-
NeurIPS 20222022Recent advance in deep learning has led to the rapid adoption of machine learning-based NLP models in a wide range of applications. Despite the continuous gain in accuracy, backward compatibility is also an important aspect for industrial applications, yet it received little research attention. Backward compatibility requires that the new model does not regress on cases that were correctly handled by its
-
EMNLP 20222022Natural language understanding (NLU) models are a core component of large-scale conversational assistants. Collecting training data for these models through manual annotations is slow and expensive that impedes the pace of model improvement. We present a three stage approach to address this challenge: First, we identify a large set of relatively infrequent utterances from live traffic where the users implicitly
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all