Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
KDD 2025 Workshop on AI for Supply Chain2025Effective attribution of causes to outcomes is crucial for optimizing complex supply chain operations. Traditional methods, often relying on waterfall logic or correlational analysis, frequently fall short in identifying the true drivers of performance issues. This paper proposes a comprehensive framework leveraging data-driven causal discovery to construct and validate Structural Causal Models (SCMs).
-
The Web Conf 2025 Workshop on Resource-Efficient Learning for the Web2025Web search engines process billions of queries daily, making the balance between computational efficiency and ranking quality crucial. While neural ranking models have shown impressive performance, their computational costs, particularly in feature extraction, pose significant challenges for large-scale deployment. This paper investigates how different configurations of feature selection and document filtering
-
NeuS 20252025The “state” of State Space Models (SSMs) represents their memory, which fades exponentially over an unbounded span. By contrast, Attention-based models have “eidetic” (i.e., verbatim, or photographic) memory over a finite span (context size). Hybrid architectures combine State Space layers with Attention, but still cannot recall the distant past and can access only the most recent tokens eidetically. Unlike
-
ICLR 2025 Workshop on Modularity for Collaborative, Decentralized, and Continual Deep Learning2025It is well known that Large language models (LLMs) have good zero-shot and few-shot performance which makes them a promising candidate for inference when no or few training samples are available. However, when there is abundant task data, small custom trained models perform as well or are superior in performance to pre-trained LLMs, even after accounting for in-context examples. Further, smaller models
-
2025Fine-tuning large language models (LLMs) for specific tasks requires diverse, high-quality training data. However, obtaining sufficient relevant data remains a significant challenge. Existing data synthesis methods either depend on extensive seed datasets or struggle to balance task relevance and data diversity. To address these challenges, we propose Attributeguided multI-hop Data Expansion (AIDE), a novel
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all