Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
ICML 2025 Workshop on Multi-Agent Systems in the Era of Foundation Models2025Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks in recent years. While prior work has explored leveraging LLMs to generate synthetic data for self-improvement, repeated iterations often suffer from diminishing returns due to the reliance on homogeneous reasoning patterns and limited exploration of alternative perspectives. In this paper, we introduce a
-
2025Recent smaller language models such Phi-3.5 and Phi-4 rely on synthetic data generated using larger Language models. Questions remain about leveraging synthetic data for other use cases, such as adapting LLMs to specific domains. A key limitation of synthetic data is low diversity, which negatively impacts its downstream applicability for improving other models. To address this, we propose MetaSynth, a
-
KDD 2025 Workshop on Evaluation and Trustworthiness of Agentic and Generative AI Models2025The emergence of AI-driven web automation through Large Language Models (LLMs) offers unprecedented opportunities for optimizing digital workflows. However, deploying such systems within industry's real-world environments presents four core challenges: (1) ensuring consistent execution, (2) accurately identifying critical HTML elements, (3) meeting human-like accuracy in order to automate operations at
-
2025Unlike closed-vocabulary 3D instance segmentation that is often trained end-to-end, open-vocabulary 3D instance segmentation (OV-3DIS) often leverages vision-language models (VLMs) to generate 3D instance proposals and classify them. While various concepts have been proposed from existing research, we observe that these individual concepts are not mutually exclusive but complementary. In this paper, we
-
CAV 20252025Many security- and performance-critical domains, such as cryptography, rely on low-level verification to minimize the trusted computing surface and allow code to be written directly in assembly. However, verifying assembly code against a realistic machine model is a challenging task. Furthermore, certain security properties—such as constant-time behavior—require relational reasoning that goes beyond traditional
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all