Customer-obsessed science


Research areas
-
September 2, 2025Audible's ML algorithms connect users directly to relevant titles, reducing the number of purchase steps for millions of daily users.
-
-
Featured news
-
Time series forecasting is a critical first step in generating demand plans for supply chains. Experiments on time series models typically focus on demonstrating improvements in forecast accuracy over existing/baseline solutions, quantified according to some accuracy metric. There is no doubt that forecast accuracy is important; however in production systems, demand planners often value consistency and
-
AI and Deep Learning methods have revolutionized many forecasting applications but have not achieved widespread adoption in industry for aggregate forecasting. This paper challenges the AI research community by identifying three critical capabilities that current AI approaches lack: (1) multivariate consistency at scale, (2) explainable and controllable longrun assumptions, and (3) flexible incorporation
-
This paper proposes using two metrics to quantify the forecastability of time series prior to model development: the spectral predictability score and the largest Lyapunov exponent. Unlike traditional model evaluation metrics, these measures assess the inherent forecastability characteristics of the data before any forecast attempts. The spectral predictability score evaluates the strength and regularity
-
Multi-horizon and multi-lead time forecasting is a well-established area in machine learning, particularly in demand forecasting, which plays a critical role in a product’s lifecycle. Accurate forecasts support key operational functions, including inventory management, financial planning, promotion planning, and supply chain optimization. Traditional demand forecasting methods typically rely on learning
-
Large Language Models (LLMs) have recently enabled natural language interfaces that translate user queries into executable SQL, offering a powerful solution for non-technical stakeholders to access structured data. However, one of the limitation that LLMs do not natively express uncertainty makes it difficult to assess the reliability of their generated queries. This paper presents a case study that evaluates
Conferences
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all