Customer-obsessed science


Research areas
-
July 22, 2025Generating diverse synthetic prior distributions leads to a tabular foundation model that outperforms task-specific baselines.
Featured news
-
AAAI 2025 Workshop on Preventing and Detecting LLM Misinformation2025Unlearning aims to remove copyrighted, sensitive, or private content from large language models (LLMs) without a full retraining. In this work, we develop a multi-task unlearning benchmark (LUME) which features three tasks: (1) unlearn synthetically generated creative short novels, (2) unlearn synthetic biographies with sensitive information, and (3) unlearn a collection of public biographies. We further
-
NAACL 2025 Workshop on TrustNLP2025Large Language Models (LLMs) have demonstrated excellent capabilities in Question Answering (QA) tasks, yet their ability to identify and address ambiguous questions remains underdeveloped. Ambiguities in user queries often lead to inaccurate or misleading answers, undermining user trust in these systems. Despite prior attempts using prompt-based methods, performance has largely been equivalent to random
-
2025We present MegaBeam-Mistral-7B1, a language model that supports 512K-token context length. Our work addresses practical limitations in long-context training, supporting real-world tasks such as compliance monitoring and verification. Evaluated on three long-context benchmarks, our 7B-parameter model demonstrates superior in-context learning performance on HELMET and robust retrieval and tracing capability
-
2025Accurate mapping of queries to product categories is crucial for efficient retrieval and ranking of relevant products in e-commerce search. Conventionally, such query classification models rely on supervised learning using historical user interactions, but their effectiveness diminishes in cold-start scenarios, where new categories or products lack sufficient training data. This results in poor query-to-category
-
2025Large Language Models (LLMs) enable natural language to SQL conversion, allowing users to query databases without SQL expertise. However, generating accurate, efficient queries is challenging due to ambiguous intent, domain knowledge requirements, and database constraints. Extensive reasoning improves SQL quality but increases computational costs and latency. We propose SQLGenie, a practical system for
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all