Customer-obsessed science
Research areas
-
January 13, 20267 min readLeveraging existing environment simulators and reward functions based on verifiable ground truth boosts task success rate, even with small models and small training datasets.
-
December 29, 20256 min read
-
December 29, 20259 min read
-
December 8, 20258 min read
-
December 5, 20256 min read
Featured news
-
2024Mitigating hallucinations in large vision-language models (LVLMs) remains an open problem. Recent benchmarks do not address hallucinations in open-ended free-form responses, which we term “Type I hallucinations”. Instead, they focus on hallucinations responding to very specific question formats—typically a multiple-choice response regarding a particular object or attribute—which we term “Type II hallucinations
-
International Journal of Computer Vision2024Matching algorithms predict relationships between items in a collection. For example, in 1:1 face verification, a matching algorithm predicts whether two face images depict the same per-son. Accurately assessing the uncertainty of the error rates of such algorithms can be challenging when test data are dependent and error rates are low, two aspects that have been often over-looked in the literature. In
-
EUSIPCO 20242024Loudspeaker array beamforming is a common sig-nal processing technique for acoustic directivity control and robust audio reproduction. Unlike their microphone counterpart, loudspeaker constraints are often heterogeneous due to arrayed transducers with varying operating ranges in frequency, acoustic-electrical sensitivity, efficiency, and directivity. This work pro-poses a frequency-regularization method
-
2024Multi-task learning (MTL) considers learning a joint model for multiple tasks by optimizing a convex combination of all task losses. To solve the optimization problem, existing methods use an adaptive weight updating scheme, where task weights are dynamically adjusted based on their respective losses to prioritize difficult tasks. However, these algorithms face a great challenge whenever label noise is
-
LREC-COLING 2024 Workshop on e-Commerce and NLP2024In the dynamic marketplace, vendors continuously seek innovative ideas for new products and ways to improve existing ones. These ideas can be uncovered by analyzing text data, such as product descriptions and customer reviews. However, the ever-increasing volume of text data poses a challenge in extracting meaningful insights. Therefore, this study addresses the challenge of extracting actionable insights
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all