Customer-obsessed science


Research areas
-
April 11, 2025Novel three-pronged approach combines claim-level evaluations, chain-of-thought reasoning, and classification of hallucination error types.
-
-
Featured news
-
2025Direct alignment algorithms (DAAs), such as direct preference optimization (DPO), have become popular alternatives for Reinforcement Learning from Human Feedback (RLHF) due to their simplicity, efficiency, and stability. However, the preferences used in DAAs are usually collected before the alignment training begins and remain unchanged (off-policy). This design leads to two problems where the policy model
-
2025Generative models that satisfy hard constraints are critical in many scientific and engineering applications, where physical laws or system requirements must be strictly respected. Many existing constrained generative models, especially those developed for computer vision, rely heavily on gradient information, which is often sparse or computationally expensive in some fields, e.g., partial differential
-
2025Vision-Language Models (VLMs) have demonstrated impressive performance across a versatile set of tasks. A key challenge in accelerating VLMs is storing and accessing the large Key-Value (KV) cache that encodes long visual contexts, such as images or videos. While existing KV cache compression methods are effective for Large Language Models (LLMs), directly migrating them to VLMs yields suboptimal accuracy
-
2025Faithfulness evaluators based on large language models (LLMs) are often fooled by the fluency of the text and struggle with identifying errors in the summaries. We propose an approach to summary faithfulness evaluation in which multiple LLM-based agents are assigned initial stances (regardless of what their belief might be) and forced to come up with a reason to justify the imposed belief, thus engaging
-
NAACL 2025 Workshop on TrustNLP2025Warning: This paper includes content that may be considered inappropriate or offensive to some readers. Viewer discretion is advised. Language Model Models (LLMs) have improved dramatically in the past few years, increasing their adoption and the scope of their capabilities over time. A significant amount of work is dedicated to “model alignment”, i.e., preventing LLMs to generate unsafe responses when
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all