Customer-obsessed science


Research areas
-
July 22, 2025Generating diverse synthetic prior distributions leads to a tabular foundation model that outperforms task-specific baselines.
Featured news
-
2024Existing Large Language Models (LLMs) usually remain static after deployment, which might make it hard to inject new knowledge into the model. We aim to build models containing a considerable portion of self-updatable parameters, enabling the model to integrate new knowledge effectively and efficiently. To this end, we introduce MemoryLLM, a model that comprises a transformer and a fixed-size memory pool
-
2024This paper proposes the use of “multicalibration” to yield interpretable and reliable confidence scores for outputs generated by large language models (LLMs). Multicalibration asks for calibration not just marginally, but simultaneously across various intersecting groupings of the data. We show how to form groupings for prompt/completion pairs that are correlated with the probability of correctness via
-
2024Adapting large language models (LLMs) to unseen tasks with in-context training samples without fine-tuning remains an important research problem. To learn a robust LLM that adapts well to unseen tasks, multiple meta-training approaches have been proposed such as MetaICL and MetaICT, which involve meta-training pre-trained LLMs on a wide variety of diverse tasks. These meta-training approaches essentially
-
Tokenization matters: Navigating data-scarce tokenization for gender inclusive language technologies2024Gender-inclusive NLP research has documented the harmful limitations of gender binary-centric large language models (LLM), such as the inability to correctly use gender-diverse English neopronouns (e.g., xe, zir, fae). While data scarcity is a known culprit, the precise mechanisms through which scarcity affects this behavior remain under-explored. We discover LLM misgendering is significantly influenced
-
2024Large Language Models (LLMs) are powerful models for generation tasks, but they may not generate good quality outputs in their first attempt. Apart from model fine-tuning, existing approaches to improve prediction accuracy and quality typically involve LLM self-improvement / self-reflection that incorporate feedback from models themselves. Despite their effectiveness, these methods are hindered by their
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all