How we built Cedar with automated reasoning and differential testing

The new development process behind Amazon Web Services’ Cedar authorization-policy language.

Cedar is a new authorization-policy language used by the Amazon Verified Permissions and AWS Verified Access managed services, and we recently released it publicly. Using Cedar, developers can write policies that specify fine-grained permissions for their applications. The applications then authorize access requests by calling Cedar’s authorization engine. Because Cedar policies are separate from application code, they can be independently authored, updated, analyzed, and audited. 

Related content
CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

We want to assure developers that Cedar’s authorization decisions will be correct. To provide that assurance, we follow a two-part process we call verification-guided development when we’re working on Cedar. First, we use automated reasoning to prove important correctness properties about formal models of Cedar’s components. Second, we use differential random testing to show that the models match the production code. In this blog post we present an overview of verification-guided development for Cedar.

A primer on Cedar

Cedar is a language for writing and enforcing authorization policies for custom applications. Cedar policies are expressed in syntax resembling natural language. They define who (the principal) can do what (the action) on what target (the resource) under which conditions (when)?

To see how Cedar works, consider a simple application, TinyTodo, designed for managing task lists. TinyTodo uses Cedar to control who can do what. Here is one of TinyTodo’s policies:

// policy 1
permit(principal, action, resource)
when {
	resource has owner && resource.owner == principal
};

This policy states that any principal (a TinyTodo User) can perform any action on any resource (a TinyTodo List) as long as the resource’s creator, defined by its owner attribute, matches the requesting principal. Here’s another TinyTodo Cedar policy:

// policy 2
permit (
	principal,
	action == Action::"GetList",
	resource
)
when {
	principal in resource.editors || principal in resource.readers
};

This policy states that any principal can read the contents of a task list (Action::"GetList") if that principal is in either the list’s readers group or its editors group. Here is a third policy:

// policy 3
forbid (
	principal in Team::"interns",
	action == Action::"CreateList",
	resource == Application::"TinyTodo"
);

This policy states that any principal who is an intern (in Team::"interns") is forbidden from creating a new task list (Action::"CreateList") using TinyTodo (Application::"TinyTodo").

Related content
Meet Amazon Science’s newest research area.

When the application needs to enforce access, as when a user of TinyTodo issues a command, it only needs to make a corresponding request to the Cedar authorization engine. The authorization engine evaluates the request in light of the Cedar policies and relevant application data. If it returns decision Allow, TinyTodo can proceed with the command. If it returns decision Deny, TinyTodo can report that the command is not permitted.

How do we build Cedar to be trustworthy?

Our work on Cedar uses a process we call verification-guided development to ensure that Cedar’s authorization engine makes the correct decisions. The process has two parts. First, we model Cedar’s authorization engine and validator in the Dafny verification-aware programming language. With Dafny, you can write code, and you can specify properties about what the code is meant to do under all circumstances. Using Dafny’s built-in automated-reasoning capabilities we have proved that the code satisfies a variety of safety and security properties.

Second, we use differential random testing (DRT) to confirm that Cedar’s production implementation, written in Rust, matches the Dafny model’s behavior. We generate millions of diverse inputs and feed them to both the Dafny model and the production code. If both versions always produce the same output, we have a high degree of confidence that the implementation matches the model.

Cedar figure.png
Building Cedar using automated reasoning and differential testing.

Proving properties about Cedar authorization

 Cedar’s authorization algorithm was designed to be secure by default, as exemplified by the following two properties:

  • explicit permit — permission is granted only by individual permit policies and is not gained by error or default;
  • forbid overrides permit — any applicable forbid policy always denies access, even if there is a permit policy that allows it.

With these properties, sets of policies are easier to understand. Policy authors know that permit policies are the only way access is granted, and forbid policies decline access regardless of whether it is explicitly permitted.

Related content
Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

Given an authorization request, the Cedar authorization engine takes each Cedar policy and evaluates it after substituting the application request parameters into the principal, action and resource variables. For example, for the request principal= User::”Alice”, action=Action::”GetList”, and resource=List::”AliceList”, substituting for the variables in policy 1 would produce the expression List::”AliceList” has owner && List::”AliceList”.owner == User::”Alice”. If this expression evaluates to true, we say the request satisfies the policy. The authorization engine collects the satisfied forbid and permit policies into distinct sets and then makes its decision.

We model the authorization engine as a Dafny function and use Dafny’s automated-reasoning capabilities to state and prove the explicit-permit and forbid-overrides-permit properties. To see how this helps uncover mistakes, let’s consider a buggy version of the authorization engine:

function method isAuthorized(): Response { // BUGGY VERSION
	var f := forbids();
	var p := permits();
	if f != {} then
		Response(Deny, f)
	else
		Response(Allow, p)
}

The logic states that if any forbid policy is applicable (set f is not the empty set {}), the result should be Deny, thus overriding any applicable permit policies (in set p). Otherwise, the result is Allow. While this logic correctly reflects the desired forbid-overrides-permit property, it does not correctly capture explicit permit. Just because there are no applicable forbid policies doesn’t mean there are any applicable permit policies. We can see this by specifying and attempting to prove explicit permit in Dafny:

// A request is explicitly permitted when a permit policy is satisfied
predicate IsExplicitlyPermitted(request: Request, store: Store) {
	exists p ::
		p in store.policies.policies.Keys &&
		store.policies.policies[p].effect == Permit &&
		Authorizer(request, store).satisfied(p)
}
lemma AllowedIfExplicitlyPermitted(request: Request, store: Store)
ensures // A request is allowed if it is explicitly permitted
	(Authorizer(request, store).isAuthorized().decision == Allow) ==>
	IsExplicitlyPermitted(request, store)
{ ... }

A Dafny predicate is a function that takes arguments and returns a logical condition, and a Dafny lemma is a property to be proved. The IsExplicitlyPermitted predicate defines the condition that there is an applicable permit policy for the given request. The AllowedIfExplicitlyPermitted lemma states that a decision of Allow necessarily means the request was explicitly permitted. This lemma does not hold for the isAuthorized definition above; Dafny complains that A postcondition might not hold on this return path and points to the ensures clause.

Here is the corrected code:

function method isAuthorized(): Response {
	var f := forbids();
	var p := permits();
	if f == {} && p != {} then
		Response(Allow, p)
	else
		Response(Deny, f)
}

Now a response is Allow only if there are no applicable forbid policies, and there is at least one applicable permit policy. With this change, Dafny automatically proves AllowedIfExplicitlyPermitted. It also proves forbid overrides permit (not shown).

Related content
To mark the occasion of the eighth Federated Logic Conference (FloC), Amazon’s Byron Cook, Daniel Kröning, and Marijn Heule discussed automated reasoning’s prospects.

We have used the Cedar Dafny models to prove a variety of properties. Our most significant proof is that the Cedar validator, which confirms that Cedar policies are consistent with the application’s data model, is sound: if the validator accepts a policy, evaluating the policy should never result in certain classes of error. When carrying out this proof in Dafny, we found a number of subtle bugs in the validator’s design that we were able to correct.

We note that Dafny models are useful not just for automated reasoning but for manual reasoning, too. The Dafny code is much easier to read than the Rust implementation. As one measure of this, at the time of this writing the Dafny model for the authorizer has about one-sixth as many lines of code as the production code. Both Cedar users and tool implementers can refer to the Dafny models to quickly understand precise details about how Cedar works.

Differential random testing

Once we have proved properties about the Cedar Dafny model, we want to provide evidence that they hold for the production code, too, which we can do by using DRT to show that the model and the production code behave the same. Using the cargo fuzz random-testing framework, we generate millions of inputs — access requests, accompanying data, and policies — and send them to both the Dafny model engine and the Rust production engine. If the two versions agree on the decision, then all is well. If they disagree, then we have found a bug.

The main challenge with using DRT effectively is to ensure the necessary code coverage by generating useful and diverse inputs. Randomly generated policies are unlikely to mention the same groups and attributes chosen in randomly generated requests and data. As a result, pure random generation will miss a lot of core evaluation logic and overindex on error-handling code. To resolve this, we wrote several input generators, including ones that take care to generate policies, data, and requests that are consistent with one another, while also producing policies that use Cedar’s key language constructs. As of this writing, we run DRT for six hours nightly and execute on the order of 100 million total tests.

Related content
Rungta had a promising career with NASA, but decided the stars aligned for her at Amazon.

The use of DRT during Cedar’s development has discovered corner cases where there were discrepancies between the model and the production code, making it an important tool in our toolkit. For example, there was a bug in a Rust package we were using for IP address operations; the Dafny model exposed an issue in how the package was parsing IP addresses. Since the bug is in an external package, we fixed the problem within our code while we wait for the upstream fix. We also found subtle bugs in the Cedar policy parser, in how the authorizer handles missing application data, and how namespace prefixes on application data (e.g., TinyTodo::List::”AliceList”) are interpreted.

Learn more

In this post we have discussed the verification-guided development process we have followed for the Cedar authorization policy language. In this process, we model Cedar language components in the Dafny programming language and use Dafny’s automated-reasoning capabilities to prove properties about them. We check that the Cedar production code matches the Dafny model through differential random testing. This process has revealed several interesting bugs during development and has given us greater confidence that Cedar’s authorization engine makes correct decisions.

To learn more, you can check out the Cedar Dafny models and differential-testing code on GitHub. You can also learn more about Dafny on the Dafny website and the Cedar service on the Cedar website.

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!