Quantum key distribution and authentication: Separating facts from myths

Key exchange protocols and authentication mechanisms solve distinct problems and must be integrated in a secure communication system.

Quantum key distribution (QKD) is a technology that leverages the laws of quantum physics to securely share secret information between distant communicating parties. With QKD, quantum-mechanical properties ensure that if anyone tries to tamper with the secret-sharing process, the communicating parties will know. Keys established through QKD can then be used in traditional symmetric encryption or with other cryptographic technologies to secure communications.

“Record now, decrypt later" (RNDL) is a cybersecurity risk arising from advances in quantum computing. The term refers to the situation in which attackers record encrypted data today, even though they cannot decrypt it immediately. They store this data with the expectation that future quantum computers will be powerful enough to break the cryptographic algorithms currently securing it. Sensitive information such as financial records, healthcare data, or state secrets could be at risk, even years after it was transmitted.

Mitigating RNDL requires adopting quantum-resistant cryptographic methods, such as post-quantum cryptography (PQC) and/or quantum key distribution (QKD), to ensure confidentiality against future quantum advancements. AWS has invested in the migration to post-quantum cryptography to protect the confidentiality, integrity, and authenticity of customer data.

Quantum communication is important enough that in 2022, three of its pioneers won the Nobel Prize for physics. However, misconceptions about QKD’s role still persist. One of them is that QKD lacks practical value because it “doesn’t solve the authentication problem”. This view can obscure the broad benefits that QKD brings to secure communications when integrated properly into existing systems.

QKD should be viewed as a complement to — rather than a replacement for — existing cybersecurity frameworks. Functionally, QKD solves the same problem solved by other key establishment protocols, including the well-known Diffie-Hellman (DH) method and the module-lattice-based key encapsulation mechanism (ML-KEM), the standard recently ratified by the FIPS — but it does it in a fundamentally different way. Like those methods, QKD depends on strong authentication to defend against threats such as man-in-the-middle attacks, where an attacker poses as one of the communicating parties.

Related content
The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

In short, key exchange protocols and authentication mechanisms are different security primitives for solving distinct problems and must be integrated together in a secure communication system.

The challenge, then, is not to give QKD an authentication mechanism but to understand how it can be integrated with other established mechanisms to strengthen the overall security infrastructure. As quantum technologies continue to evolve, it’s important to shift the conversation from skepticism about authentication to consideration of how QKD can be thoughtfully and practically implemented to address today’s and tomorrow’s cybersecurity needs — such as the need to mitigating the “record now, decrypt later” (RNDL) attack (see sidebar).

Understanding the role of authentication in QKD

When discussing authentication in the context of QKD, we focus on the classical digital channel that the parties use to exchange information about their activities on the quantum channel. This isn’t about user authentication methods, such as logging in with passwords or biometrics, but rather about authenticating the communicating entities and the data exchanged. Entity authentication ensures that the parties are who they claim to be; data authentication guarantees that the information received is the same as what was sent by the claimed source. QKD protocols include a classical-communication component that uses both authentication methods to assure the overall security of the interaction.

Entity authentication

Entity authentication is the process by which one party (the "prover") asserts its identity, and another party (the "verifier") validates that assertion. This typically involves a registration step, in which the verifier obtains reliable identification information about the prover, as a prelude to any further authentication activity. The purpose of this step is to establish a “root of trust” or “trust anchor”, ensuring that the verifier has a trusted baseline for future authentications.

Related content
Collaboration will seek to advance the development of a quantum internet.

Several entity authentication methods are in common use, each based on a different type of trust anchor:

  • Public-key-infrastructure (PKI) authentication: In this method, a prover’s certificate is issued by a trusted certificate authority (CA). The verifier relies on this CA, or the root CA in a certificate chain, to establish trust. The certificate acts as the trust anchor that links the prover’s identity to its public key.
  • PGP-/GPG-based (web of trust) authentication: Here, trust is decentralized. A prover’s public key is trusted if it has been vouched for by one or more trusted third parties, such as a mutual acquaintance or a public-key directory. These third parties serve as the trust anchors.
  • Pre-shared-key-based (PSK) authentication: In this case, both the prover and the verifier share a secret key that was exchanged via an offline or other secure out-of-band method. The trust anchor is the method of securely sharing this key a priori, such as a secure courier or another trusted channel.

These trust anchors form the technical backbones of all authentication systems. However, all entity authentication methods are based on a fundamental assumption: the prover is either the only party that holds the critical secret data (e.g., the prover’s private key in PKI or PGP) or the only other party that shares the secret with the verifier (PSK). If this assumption is broken — e.g., the prover's private key is stolen or compromised, or the PSK is leaked — the entire authentication process can fail.

Data authentication

Data authentication, also known as message authentication, ensures both the integrity and authenticity of the transmitted data. This means the data received by the verifier is exactly what the sender sent, and it came from a trusted source. As with entity authentication, the foundation of data authentication is the secure management of secret information shared by the communicating parties.

Related content
Among the ‘first wave’ of scientists to gain a PhD in quantum technology, the senior manager of research science discusses her two-decade-long career journey.

The most common approach to data authentication is symmetric cryptography, where both parties share a secret key. A keyed message authentication code (MAC), such as HMAC or GMAC, is used to compute a unique tag for the transmitted data. This tag allows the receiver to verify that the data hasn’t been altered during transit. The security of this method depends on the collision resistance of the chosen MAC algorithm — that is, the computational infeasibility of finding two or more plaintexts that could yield the same tag — and the confidentiality of the shared key. The authentication tag ensures data integrity, while the secret key guarantees the authenticity of the data origin.

An alternative method uses asymmetric cryptography with digital signatures. In this approach, the sender generates a signature using a private key and the data itself. The receiver, or anyone else, can verify the signature’s authenticity using the sender’s public key. This method provides data integrity through the signature algorithm, and it assures data origin authenticity as long as only the sender holds the private key. In this case, the public key serves as a verifiable link to the sender, ensuring that the signature is valid.

In both the symmetric and the asymmetric approaches, successful data authentication depends on effective entity authentication. Without knowing and trusting the identity of the sender, the verification of the data’s authenticity is compromised. Therefore, the strength of data authentication is closely tied to the integrity of the underlying entity authentication process.

Authentication in QKD

The first quantum cryptography protocol, known as BB84, was developed by Bennett and Brassard in 1984. It remains foundational to many modern QKD technologies, although notable advancements have been made since then.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

QKD protocols are unique because they rely on the fundamental principles of quantum physics, which allow for “information-theoretic security.” This is distinct from the security provided by computational complexity. In the quantum model, any attempt to eavesdrop on the key exchange is detectable, providing a layer of security that classical cryptography cannot offer.

QKD relies on an authenticated classical communication channel to ensure the integrity of the data exchanged between parties, but it does not depend on the confidentiality of that classical channel. (This is why RNDL is not an effective attack against QKD). Authentication just guarantees that the entities establishing keys are legitimate, protecting against man-in-the-middle attacks.

Currently, several commercial QKD products are available, many of which implement the original BB84 protocol and its variants. These solutions offer secure key distribution in real-world applications, and they all pair with strong authentication processes to ensure the communication remains secure from start to finish. By integrating both technologies, organizations can build communication infrastructures capable of withstanding both classical and quantum threats.

Authentication in QKD bootstrap: A manageable issue

During the initial bootstrap phase of a QKD system, the authentic classical channel is established using traditional authentication methods based on PKI or PSK. As discussed earlier, all of these methods ultimately rely on the establishment of a trust anchor.

Related content
Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

While confidentiality may need to be maintained for an extended period (sometimes decades), authentication is a real-time process. It verifies identity claims and checks data integrity in the moment. Compromising an authentication mechanism at some future point will not affect past verifications. Once an authentication process is successfully completed, the opportunity for an adversary to tamper with it has passed. That is, even if, in the future, a specific authentication mechanism used in QKD is broken by a new technology, QKD keys generated prior to that point are still safe to use, because no adversary can go back in time to compromise past QKD key generation.

This means that the reliance on traditional, non-QKD authentication methods presents an attack opportunity only during the bootstrap phase, which typically lasts just a few minutes. Given that this phase is so short compared to the overall life cycle of a QKD deployment, the potential risks posed by using authentication mechanisms are relatively minor.

Authentication after QKD bootstrap: Not a new issue

Once the bootstrap phase is complete, the QKD devices will have securely established shared keys. These keys can then be used for PSK-based authentication in future communications. In essence, QKD systems can maintain the authenticated classical communication channel by utilizing a small portion of the very keys they generate, ensuring continued secure communication beyond the initial setup phase.

It is important to note that if one of the QKD devices is compromised locally for whatever reason, the entire system’s security could be at risk. However, this is not a unique vulnerability introduced by QKD. Any cryptographic system faces similar challenges when the integrity of an endpoint is compromised. In this respect, QKD is no more susceptible to it than any other cryptographic system.

Overcoming key challenges to QKD’s role in cybersecurity

Up to now we have focused on clarifying the myths about authentication needs in QKD. Next we will discuss several other challenges in using QKD in practice.

Bridging the gap between QKD theory and implementation

While QKD protocols are theoretically secure, there remains a significant gap between theory and real-world implementations. Unlike traditional cryptographic methods, which rely on well-understood algorithms that can be thoroughly reviewed and certified, QKD systems depend on specialized hardware. This introduces complexity, as the process of reviewing and certifying QKD hardware is not yet mature.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

In conventional cryptography, risks like side-channel attacks — which use runtime clues such as memory access patterns or data retrieval times to deduce secrets — are well understood and mitigated through certification processes. QKD systems are following a similar path. The European Telecommunications Standards Institute (ETSI) has made a significant move by introducing the Common Criteria Protection Profile for QKD, the first international effort to create a standardized certification framework for these systems. ISO/IEC has also published standards on security requirements and test and evaluation methods for QKD. These represent crucial steps in building the same level of trust that traditional cryptography enjoys.

Once the certification process is fully established, confidence in QKD’s hardware implementations will continue to grow, enabling the cybersecurity community to embrace QKD as a reliable, cutting-edge solution for secure communication. Until then, the focus remains on advancing the review and certification processes to ensure that these systems meet the highest security standards.

QKD deployment considerations

One of the key challenges in the practical deployment of QKD is securely transporting the keys generated by QKD devices to their intended users. While it’s accepted that QKD is a robust mechanism for distributing keys to the QKD devices themselves, it does not cover the secure delivery of keys from the QKD device to the end user (or key consumer).

QKD diagram.png
A schematic representation of two endpoints — site A and site B — that want to communicate safely. The top line represents the user traffic being protected, and the bottom lines are the channels required to establish secure communication. An important practical consideration is how to transmit a key between a QKD device and an end user within an endpoint.

This issue arises whether the QKD system is deployed within a large intranet or a small local-area network. In both cases, the keys must be transported over a non-QKD system. The standard deployment requirement is that the key delivery from the QKD system to the key consumer occurs “within the same secure site”, and the definition of a “secure site” is up to the system operator.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The best practice is to make the boundary of the secure site as small as is practical. One extreme option is to remove the need for transporting keys over classical networks entirely, by putting the QKD device and the key user’s computing hardware in the same physical unit. This eliminates the need for traditional network protocols for key transport and realizes the full security benefits of QKD without external dependency. In cases where the extreme option is infeasible or impractical, the secure site should cover only the local QKD system and the intended key consumers.

Conclusion

QKD-generated keys will remain secure even when quantum computers emerge, and communications using these keys are not vulnerable to RNDL attacks. For QKD to reach its full potential, however, the community must collaborate closely with the broader cybersecurity ecosystem, particularly in areas like cryptography and governance, risk, and compliance (GRC). By integrating the insights and frameworks established in these fields, QKD can overcome its current challenges in trust and implementation.

This collective effort is essential to ensure that QKD becomes a reliable and integral part of secure communication systems. As these collaborations deepen, QKD will be well-positioned to enhance existing security frameworks, paving the way for its adoption across industries and applications.

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning and generative AI background, to focus on the development of software development skills of Nova foundational models. As a Principal Applied Scientist, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically strong and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist II, with a strong background in Machine Learning and Generative AI to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers' shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search, image recognition, and multi-modal AI to deliver significant impact for the business. In addition, you will be at the forefront of leveraging Generative AI (GenAI) technologies, including Large Language Models (LLMs) and foundation models, to drive advanced language understanding, creative ad content generation, and retrieval-augmented generation (RAG). You will also design and build agentic AI systems capable of autonomous, multi-step reasoning, tool use, and chain-of-thought decision-making, while applying techniques such as prompt engineering, fine-tuning, RLHF (Reinforcement Learning from Human Feedback), and embedding-based retrieval to develop scalable, production-grade solutions. Ideal candidates will have hands-on experience fine-tuning, evaluating, and deploying LLMs at scale, along with a strong understanding of emerging GenAI paradigms including agentic workflows and responsible AI practices. You should be able to work cross-functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists, guiding them to deliver high-impact products and services for Amazon customers and sellers, and fostering a culture of innovation around the latest advancements in Generative AI and LLM technologies. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist II on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs