Quantum key distribution and authentication: Separating facts from myths

Key exchange protocols and authentication mechanisms solve distinct problems and must be integrated in a secure communication system.

Quantum key distribution (QKD) is a technology that leverages the laws of quantum physics to securely share secret information between distant communicating parties. With QKD, quantum-mechanical properties ensure that if anyone tries to tamper with the secret-sharing process, the communicating parties will know. Keys established through QKD can then be used in traditional symmetric encryption or with other cryptographic technologies to secure communications.

“Record now, decrypt later" (RNDL) is a cybersecurity risk arising from advances in quantum computing. The term refers to the situation in which attackers record encrypted data today, even though they cannot decrypt it immediately. They store this data with the expectation that future quantum computers will be powerful enough to break the cryptographic algorithms currently securing it. Sensitive information such as financial records, healthcare data, or state secrets could be at risk, even years after it was transmitted.

Mitigating RNDL requires adopting quantum-resistant cryptographic methods, such as post-quantum cryptography (PQC) and/or quantum key distribution (QKD), to ensure confidentiality against future quantum advancements. AWS has invested in the migration to post-quantum cryptography to protect the confidentiality, integrity, and authenticity of customer data.

Quantum communication is important enough that in 2022, three of its pioneers won the Nobel Prize for physics. However, misconceptions about QKD’s role still persist. One of them is that QKD lacks practical value because it “doesn’t solve the authentication problem”. This view can obscure the broad benefits that QKD brings to secure communications when integrated properly into existing systems.

QKD should be viewed as a complement to — rather than a replacement for — existing cybersecurity frameworks. Functionally, QKD solves the same problem solved by other key establishment protocols, including the well-known Diffie-Hellman (DH) method and the module-lattice-based key encapsulation mechanism (ML-KEM), the standard recently ratified by the FIPS — but it does it in a fundamentally different way. Like those methods, QKD depends on strong authentication to defend against threats such as man-in-the-middle attacks, where an attacker poses as one of the communicating parties.

Related content
The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

In short, key exchange protocols and authentication mechanisms are different security primitives for solving distinct problems and must be integrated together in a secure communication system.

The challenge, then, is not to give QKD an authentication mechanism but to understand how it can be integrated with other established mechanisms to strengthen the overall security infrastructure. As quantum technologies continue to evolve, it’s important to shift the conversation from skepticism about authentication to consideration of how QKD can be thoughtfully and practically implemented to address today’s and tomorrow’s cybersecurity needs — such as the need to mitigating the “record now, decrypt later” (RNDL) attack (see sidebar).

Understanding the role of authentication in QKD

When discussing authentication in the context of QKD, we focus on the classical digital channel that the parties use to exchange information about their activities on the quantum channel. This isn’t about user authentication methods, such as logging in with passwords or biometrics, but rather about authenticating the communicating entities and the data exchanged. Entity authentication ensures that the parties are who they claim to be; data authentication guarantees that the information received is the same as what was sent by the claimed source. QKD protocols include a classical-communication component that uses both authentication methods to assure the overall security of the interaction.

Entity authentication

Entity authentication is the process by which one party (the "prover") asserts its identity, and another party (the "verifier") validates that assertion. This typically involves a registration step, in which the verifier obtains reliable identification information about the prover, as a prelude to any further authentication activity. The purpose of this step is to establish a “root of trust” or “trust anchor”, ensuring that the verifier has a trusted baseline for future authentications.

Related content
Collaboration will seek to advance the development of a quantum internet.

Several entity authentication methods are in common use, each based on a different type of trust anchor:

  • Public-key-infrastructure (PKI) authentication: In this method, a prover’s certificate is issued by a trusted certificate authority (CA). The verifier relies on this CA, or the root CA in a certificate chain, to establish trust. The certificate acts as the trust anchor that links the prover’s identity to its public key.
  • PGP-/GPG-based (web of trust) authentication: Here, trust is decentralized. A prover’s public key is trusted if it has been vouched for by one or more trusted third parties, such as a mutual acquaintance or a public-key directory. These third parties serve as the trust anchors.
  • Pre-shared-key-based (PSK) authentication: In this case, both the prover and the verifier share a secret key that was exchanged via an offline or other secure out-of-band method. The trust anchor is the method of securely sharing this key a priori, such as a secure courier or another trusted channel.

These trust anchors form the technical backbones of all authentication systems. However, all entity authentication methods are based on a fundamental assumption: the prover is either the only party that holds the critical secret data (e.g., the prover’s private key in PKI or PGP) or the only other party that shares the secret with the verifier (PSK). If this assumption is broken — e.g., the prover's private key is stolen or compromised, or the PSK is leaked — the entire authentication process can fail.

Data authentication

Data authentication, also known as message authentication, ensures both the integrity and authenticity of the transmitted data. This means the data received by the verifier is exactly what the sender sent, and it came from a trusted source. As with entity authentication, the foundation of data authentication is the secure management of secret information shared by the communicating parties.

Related content
Among the ‘first wave’ of scientists to gain a PhD in quantum technology, the senior manager of research science discusses her two-decade-long career journey.

The most common approach to data authentication is symmetric cryptography, where both parties share a secret key. A keyed message authentication code (MAC), such as HMAC or GMAC, is used to compute a unique tag for the transmitted data. This tag allows the receiver to verify that the data hasn’t been altered during transit. The security of this method depends on the collision resistance of the chosen MAC algorithm — that is, the computational infeasibility of finding two or more plaintexts that could yield the same tag — and the confidentiality of the shared key. The authentication tag ensures data integrity, while the secret key guarantees the authenticity of the data origin.

An alternative method uses asymmetric cryptography with digital signatures. In this approach, the sender generates a signature using a private key and the data itself. The receiver, or anyone else, can verify the signature’s authenticity using the sender’s public key. This method provides data integrity through the signature algorithm, and it assures data origin authenticity as long as only the sender holds the private key. In this case, the public key serves as a verifiable link to the sender, ensuring that the signature is valid.

In both the symmetric and the asymmetric approaches, successful data authentication depends on effective entity authentication. Without knowing and trusting the identity of the sender, the verification of the data’s authenticity is compromised. Therefore, the strength of data authentication is closely tied to the integrity of the underlying entity authentication process.

Authentication in QKD

The first quantum cryptography protocol, known as BB84, was developed by Bennett and Brassard in 1984. It remains foundational to many modern QKD technologies, although notable advancements have been made since then.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

QKD protocols are unique because they rely on the fundamental principles of quantum physics, which allow for “information-theoretic security.” This is distinct from the security provided by computational complexity. In the quantum model, any attempt to eavesdrop on the key exchange is detectable, providing a layer of security that classical cryptography cannot offer.

QKD relies on an authenticated classical communication channel to ensure the integrity of the data exchanged between parties, but it does not depend on the confidentiality of that classical channel. (This is why RNDL is not an effective attack against QKD). Authentication just guarantees that the entities establishing keys are legitimate, protecting against man-in-the-middle attacks.

Currently, several commercial QKD products are available, many of which implement the original BB84 protocol and its variants. These solutions offer secure key distribution in real-world applications, and they all pair with strong authentication processes to ensure the communication remains secure from start to finish. By integrating both technologies, organizations can build communication infrastructures capable of withstanding both classical and quantum threats.

Authentication in QKD bootstrap: A manageable issue

During the initial bootstrap phase of a QKD system, the authentic classical channel is established using traditional authentication methods based on PKI or PSK. As discussed earlier, all of these methods ultimately rely on the establishment of a trust anchor.

Related content
Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

While confidentiality may need to be maintained for an extended period (sometimes decades), authentication is a real-time process. It verifies identity claims and checks data integrity in the moment. Compromising an authentication mechanism at some future point will not affect past verifications. Once an authentication process is successfully completed, the opportunity for an adversary to tamper with it has passed. That is, even if, in the future, a specific authentication mechanism used in QKD is broken by a new technology, QKD keys generated prior to that point are still safe to use, because no adversary can go back in time to compromise past QKD key generation.

This means that the reliance on traditional, non-QKD authentication methods presents an attack opportunity only during the bootstrap phase, which typically lasts just a few minutes. Given that this phase is so short compared to the overall life cycle of a QKD deployment, the potential risks posed by using authentication mechanisms are relatively minor.

Authentication after QKD bootstrap: Not a new issue

Once the bootstrap phase is complete, the QKD devices will have securely established shared keys. These keys can then be used for PSK-based authentication in future communications. In essence, QKD systems can maintain the authenticated classical communication channel by utilizing a small portion of the very keys they generate, ensuring continued secure communication beyond the initial setup phase.

It is important to note that if one of the QKD devices is compromised locally for whatever reason, the entire system’s security could be at risk. However, this is not a unique vulnerability introduced by QKD. Any cryptographic system faces similar challenges when the integrity of an endpoint is compromised. In this respect, QKD is no more susceptible to it than any other cryptographic system.

Overcoming key challenges to QKD’s role in cybersecurity

Up to now we have focused on clarifying the myths about authentication needs in QKD. Next we will discuss several other challenges in using QKD in practice.

Bridging the gap between QKD theory and implementation

While QKD protocols are theoretically secure, there remains a significant gap between theory and real-world implementations. Unlike traditional cryptographic methods, which rely on well-understood algorithms that can be thoroughly reviewed and certified, QKD systems depend on specialized hardware. This introduces complexity, as the process of reviewing and certifying QKD hardware is not yet mature.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

In conventional cryptography, risks like side-channel attacks — which use runtime clues such as memory access patterns or data retrieval times to deduce secrets — are well understood and mitigated through certification processes. QKD systems are following a similar path. The European Telecommunications Standards Institute (ETSI) has made a significant move by introducing the Common Criteria Protection Profile for QKD, the first international effort to create a standardized certification framework for these systems. ISO/IEC has also published standards on security requirements and test and evaluation methods for QKD. These represent crucial steps in building the same level of trust that traditional cryptography enjoys.

Once the certification process is fully established, confidence in QKD’s hardware implementations will continue to grow, enabling the cybersecurity community to embrace QKD as a reliable, cutting-edge solution for secure communication. Until then, the focus remains on advancing the review and certification processes to ensure that these systems meet the highest security standards.

QKD deployment considerations

One of the key challenges in the practical deployment of QKD is securely transporting the keys generated by QKD devices to their intended users. While it’s accepted that QKD is a robust mechanism for distributing keys to the QKD devices themselves, it does not cover the secure delivery of keys from the QKD device to the end user (or key consumer).

QKD diagram.png
A schematic representation of two endpoints — site A and site B — that want to communicate safely. The top line represents the user traffic being protected, and the bottom lines are the channels required to establish secure communication. An important practical consideration is how to transmit a key between a QKD device and an end user within an endpoint.

This issue arises whether the QKD system is deployed within a large intranet or a small local-area network. In both cases, the keys must be transported over a non-QKD system. The standard deployment requirement is that the key delivery from the QKD system to the key consumer occurs “within the same secure site”, and the definition of a “secure site” is up to the system operator.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The best practice is to make the boundary of the secure site as small as is practical. One extreme option is to remove the need for transporting keys over classical networks entirely, by putting the QKD device and the key user’s computing hardware in the same physical unit. This eliminates the need for traditional network protocols for key transport and realizes the full security benefits of QKD without external dependency. In cases where the extreme option is infeasible or impractical, the secure site should cover only the local QKD system and the intended key consumers.

Conclusion

QKD-generated keys will remain secure even when quantum computers emerge, and communications using these keys are not vulnerable to RNDL attacks. For QKD to reach its full potential, however, the community must collaborate closely with the broader cybersecurity ecosystem, particularly in areas like cryptography and governance, risk, and compliance (GRC). By integrating the insights and frameworks established in these fields, QKD can overcome its current challenges in trust and implementation.

This collective effort is essential to ensure that QKD becomes a reliable and integral part of secure communication systems. As these collaborations deepen, QKD will be well-positioned to enhance existing security frameworks, paving the way for its adoption across industries and applications.

Related content

US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of superconducting quantum processors. We seek a Quantum Research Scientist to investigate how material defects affect qubit performance. In this role, you will combine expertise in numerical simulations and materials characterization to study materials loss mechanisms such as two-level systems, quasiparticles, vortices, etc. Key job responsibilities Provide subject matter expertise on integrated experimental and computational studies of materials defects Develop and use computational tools for large-scale simulations of disordered structures Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces Identify material properties that can be a reliable proxy for the performance of superconducting resonators and qubits Communicate findings to teammates, the broader CQC team and, when appropriate, publish findings in scientific journals A day in the life At the AWS CQC, we understand that developing quantum computing technology is a marathon, not a sprint. The work/life integration within our team encourages a culture where employees work hard and also have ownership over their downtime. We are committed to the growth and development of every employee at the AWS CQC, and that includes our research scientists. You will receive management and mentorship from within the team that is geared toward career growth, and also have the opportunity to participate in Amazon's mentorship programs for scientists and engineers. Working closely with other quantum research scientists in other disciplines – like design, measurement and cryogenic hardware – will provide opportunities to dive deep into an education on quantum computing. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver the fabricated devices for quantum computing experiments. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities What will you do? - Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms - Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques - Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine - Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics - Train custom Gen AI models that beat SOTA and paves path for developing production models - Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices - Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
US, CA, Cupertino
We are seeking a highly skilled Data Scientist to join our Machine Learning Architecture team, focusing on power and performance optimization for ML acceleration workloads across Amazon's global data center infrastructure. This role combines advanced data science techniques with deep technical understanding of ML hardware acceleration to drive efficiency improvements in training and inference workloads at massive scale. Key job responsibilities ata Analysis & Optimization * Analyze power consumption and performance metrics across all Amazon data centers for machine learning acceleration workloads * Develop predictive models and statistical frameworks to identify optimization opportunities and performance bottlenecks * Create automated monitoring and alerting systems for power and performance anomalies Strategic Planning & Deployment Guidance * Provide data-driven recommendations for server deployments and capacity planning decisions across Amazon's global data center network * Develop optimization scenarios and business cases to improve capacity delivery efficiency to customers worldwide * Support strategic decision-making through comprehensive analysis of power, performance, and cost trade-offs Cross-Functional Collaboration * Partner with software engineering teams to optimize ML frameworks, drivers, and runtime systems * Collaborate with hardware engineering teams to influence chip design, server architecture, and cooling system optimization * Work closely with data center operations teams to implement and validate optimization strategies Research & Development * Conduct applied research on emerging ML acceleration technologies and their power/performance characteristics * Develop novel methodologies for measuring and improving energy efficiency in large-scale ML workloads * Publish findings and contribute to industry best practices in sustainable ML infrastructure