Michelle K. Lee
Michelle K. Lee, vice president of the Amazon Machine Learning Solutions Lab at Amazon Web Services
Credit: Moshe Zusman Photography Studio

How Michelle K. Lee plans to help businesses tap into the potential of machine learning

The head of Amazon's ML Solutions lab shares the lessons she learned leading a 200-year-old government agency — and why she's excited about the future.

Across many industries, machine learning is emerging as a critical technology for solving complex, real-world problems. From using data to predict health outcomes to making online transactions more secure, companies are finding new ways to use ML — and sometimes they need help.

Michelle K. Lee, in her role as vice president of the Amazon Machine Learning (ML) Solutions Lab at Amazon Web Services (AWS), wants to advance that process.

Prior to joining Amazon in 2019, Lee was an MIT CSAIL (formerly MIT Artificial Intelligence Lab) computer scientist, a tech executive who helped build a company that, like Amazon, grew quickly into a multi-national corporation, a professor, and a public servant. In the latter role, she served as the Under Secretary of Commerce for Intellectual Property and director of the United States Patent and Trademark Office (USPTO) from 2014 to 2017. In this position, Lee was the chief executive officer of one of the largest intellectual property offices in the world with around 13,000 employees and an annual budget in excess of $3 billion, and served as the principal advisor to the president on intellectual property policies.  She is the first woman to hold this position in American history.

Amazon Science recently talked with Lee about her experiences at the patent office, her interest in artificial intelligence, the untapped potential of machine learning, why she was drawn to the ML Solutions Lab, and more.

Q. How did you get interested in machine learning?

I was born and raised in Silicon Valley, so I’ve been around technology my entire life. As a young girl, I loved tinkering, building and making things. I fondly recall building, with my dad, the Heathkit hand-held radio and the TV that eventually sat in our living room. This led me to study engineering and computer science at MIT.  I first became interested in AI when I was a student at MIT. Back then, in the late ‘80s, everyone was excited about AI and how it might transform the world. That didn’t quite happen, but now that the cost of storage is lower, our computing power much greater, and cloud services more widely available, I do believe the time is ripe for AI and machine learning to achieve its promise and become widely available — to be democratized, if you will.

Q. How do you see that democratization being realized? 

More customers from a broader range of industries are starting to use machine learning, and I expect that adoption will continue to accelerate.  In the past, if I was in an area unrelated to the computing and machine learning industry, it was hard for me to tap into and take advantage of that functionality. Now I can be in a completely unrelated business, and I'm still able to explore, build, and deploy machine learning models to help improve my organization, to enhance my customer’s experience, or to solve a very challenging problem.

For example, NASA partnered with my team to use machine learning to understand, and ultimately predict, the occurrence of superstorms. Additionally, and more recently, data scientists from my team worked with AstraZeneca to help pathologists accelerate the classification of tissue samples by utilizing computer vision models. That reduced the time it takes to classify samples by 50%, which means their pharmaceutical research can move faster — that’s very exciting! For another customer, Cerner, one of the largest publicly traded healthcare IT companies, we were able to build a solution that allows researchers to query autotomized and anonymized patient data records. They were able to predict congestive heart failure up to 15 months before a clinical manifestation. These are just a few examples, but there are many more across a wide range of industries.

Q. What challenges remain?

We're in the early stages. If you think of it as a baseball game, the machine learning and AI journey is in the first of nine innings. It’s still hard for some organizations to find the best machine learning use case for their business. Identifying one’s highest-value use cases requires understanding the current state of machine learning technology, assessing your data and prioritizing the business needs of your organization. Once your best use cases have been identified, implementation is often a challenge, as many organizations lack the expertise on their teams, or even compliant access to their data, to implement the machine learning solutions.

Q. Where does the ML Solutions Lab fit in?

The Machine Learning Solutions Lab addresses each of these challenges. It pairs the customer's team with AWS machine learning experts who are data scientists. This team of data scientists and business consultants works to help identify and build machine learning solutions to address high-value machine learning opportunities and a path to production. Once we develop that plan, we can even provide a professional services team to help implement if needed.

We also offer educational training for technical team members, the same machine learning curriculum we use to train AWS engineers and scientists. For business leaders, there’s training aimed at teaching them ways to think about AI so they can better understand both what is possible and how AI might be used to address their business challenges.

Not every problem is solvable by machine learning, but business leaders today should have some understanding of AI and ML, and when it can be used to achieve operational efficiencies and competitive advantage.

Q. Has COVID-19 changed what you are doing?

We're seeing an increased use of AI and ML in a number of areas in response to the pandemic, from research to healthcare. Rarely before has the pace of research and publication been so furious. That’s understandable given the global medical crisis we face. While more research is good, it is hard for scientists to discover research relevant to their work given the exponentially increasing volume of information.

That’s why AWS built the CORD-19 Search tool using services like Amazon Comprehend Medical and Amazon Kendra. This new search tool, powered by machine learning and hosted at CORD19.aws, allows researchers to get answers to questions like, “What do we know about COVID-19 risk factors?” and “Are IL-6 inhibitors key to COVID-19?” or “Which medications were most beneficial in the 2002 SARS outbreak?”

Built on the Allen Institute for AI’s CORD-19 open research dataset of more than 128,000 research papers and other materials, this machine learning solution can extract relevant medical information from unstructured text and delivers robust natural-language query capabilities, helping to accelerate the pace of discovery. 

In the field of medical imaging, meanwhile, researchers are using machine learning to help recognize patterns in images, enhancing the ability of radiologists to indicate the probability of disease and to diagnose it earlier. More generally, all organizations are adjusting to the post-pandemic world, finding new ways to operate effectively and meet customer and employee needs as social distancing and quarantine measures remain in place. Machine learning is facilitating that shift by providing the tools to support remote communication, enable telemedicine, and protect food security, for example.

Q. What inspired you to choose Amazon?

In my prior position, I led a 200-year-old governmental agency, the United States Patent Trademark Office. Part of my job involved digitally transforming the agency. Because of my background at the MIT Artificial Intelligence Lab and with a big data company, I recognized that there was a tremendous opportunity to revolutionize the Patent Office’s business using AI and data analytics.

Michelle K. Lee's USPTO swearing in ceremony

We implemented some basic AI and data analytics solutions to improve the quality and consistency of the patents issued by the patent office. What I came to realize is if the USPTO has machine learning opportunities, so does every organization. The challenge is to identify those opportunities and to have a plan and team to implement them. However, that is often easier said than done.  At the USPTO, there was no way I could hire the talent — the data scientists or machine learning experts — that I have the privilege of working with today at Amazon. And that's what inspired me to lead the ML Solutions Lab at AWS.

As I mentioned earlier, we are a global team of data scientists and business consultants, who work side-by-side with our customers to identify their highest return-on-investment machine learning use cases and to help our customers implement them. What makes this fun and challenging is we do so through ideation sessions, hands-on-keyboard proofs of concepts to illustrate viability, and implementation to production. And we do so bringing learnings from 20 plus years of Amazon’s ML innovations in areas such as fulfillment and logistics, personalization and recommendations, computer vision, translation, fraud prevention, and forecasting and supply chain optimization.

Q. In your capacity as a leader, how do you view diversity?

Diversity in views and experiences is critical to innovation because, by definition, innovations require thinking outside of the box, finding a solution to an existing problem that no one has ever seen before. The broader the perspectives and experiences on the team, the greater the chances for that spark of innovation.

As a leader, I find that I make better decisions when team members challenge my thinking and offer contrary views. I welcome — in fact, I seek out — those contrary views, because the issues facing AI and ML require interdisciplinary approaches. No one person's going to have a complete view and perspective on all the issues relevant to AI and machine learning.

Q. What would you say to women considering a career in ML?

If that's your goal, pursue it with a passion. Don't wait for people who look like you to do what you know needs to be done. I have often been one of a few, or even the only woman, in the room or sitting at the table. Whether that was as a graduate student at the MIT AI Lab and the PhD program, or the first Asian American woman elected partner in my law firm, or the first woman appointed by the president of the United States to lead the United States Patent and Trademark Office. If I waited for people who looked like me to do what I did, I'd still be waiting.

That said, I am very encouraged to see the growing diversity within the field of AI and ML. We all have a long way to go still, but there are brilliant pioneers paving the way for future generations — and I look forward to seeing more in the future.

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).