Michelle K. Lee
Michelle K. Lee, vice president of the Amazon Machine Learning Solutions Lab at Amazon Web Services
Credit: Moshe Zusman Photography Studio

How Michelle K. Lee plans to help businesses tap into the potential of machine learning

The head of Amazon's ML Solutions lab shares the lessons she learned leading a 200-year-old government agency — and why she's excited about the future.

Across many industries, machine learning is emerging as a critical technology for solving complex, real-world problems. From using data to predict health outcomes to making online transactions more secure, companies are finding new ways to use ML — and sometimes they need help.

Michelle K. Lee, in her role as vice president of the Amazon Machine Learning (ML) Solutions Lab at Amazon Web Services (AWS), wants to advance that process.

Prior to joining Amazon in 2019, Lee was an MIT CSAIL (formerly MIT Artificial Intelligence Lab) computer scientist, a tech executive who helped build a company that, like Amazon, grew quickly into a multi-national corporation, a professor, and a public servant. In the latter role, she served as the Under Secretary of Commerce for Intellectual Property and director of the United States Patent and Trademark Office (USPTO) from 2014 to 2017. In this position, Lee was the chief executive officer of one of the largest intellectual property offices in the world with around 13,000 employees and an annual budget in excess of $3 billion, and served as the principal advisor to the president on intellectual property policies.  She is the first woman to hold this position in American history.

Amazon Science recently talked with Lee about her experiences at the patent office, her interest in artificial intelligence, the untapped potential of machine learning, why she was drawn to the ML Solutions Lab, and more.

Q. How did you get interested in machine learning?

I was born and raised in Silicon Valley, so I’ve been around technology my entire life. As a young girl, I loved tinkering, building and making things. I fondly recall building, with my dad, the Heathkit hand-held radio and the TV that eventually sat in our living room. This led me to study engineering and computer science at MIT.  I first became interested in AI when I was a student at MIT. Back then, in the late ‘80s, everyone was excited about AI and how it might transform the world. That didn’t quite happen, but now that the cost of storage is lower, our computing power much greater, and cloud services more widely available, I do believe the time is ripe for AI and machine learning to achieve its promise and become widely available — to be democratized, if you will.

Q. How do you see that democratization being realized? 

More customers from a broader range of industries are starting to use machine learning, and I expect that adoption will continue to accelerate.  In the past, if I was in an area unrelated to the computing and machine learning industry, it was hard for me to tap into and take advantage of that functionality. Now I can be in a completely unrelated business, and I'm still able to explore, build, and deploy machine learning models to help improve my organization, to enhance my customer’s experience, or to solve a very challenging problem.

For example, NASA partnered with my team to use machine learning to understand, and ultimately predict, the occurrence of superstorms. Additionally, and more recently, data scientists from my team worked with AstraZeneca to help pathologists accelerate the classification of tissue samples by utilizing computer vision models. That reduced the time it takes to classify samples by 50%, which means their pharmaceutical research can move faster — that’s very exciting! For another customer, Cerner, one of the largest publicly traded healthcare IT companies, we were able to build a solution that allows researchers to query autotomized and anonymized patient data records. They were able to predict congestive heart failure up to 15 months before a clinical manifestation. These are just a few examples, but there are many more across a wide range of industries.

Q. What challenges remain?

We're in the early stages. If you think of it as a baseball game, the machine learning and AI journey is in the first of nine innings. It’s still hard for some organizations to find the best machine learning use case for their business. Identifying one’s highest-value use cases requires understanding the current state of machine learning technology, assessing your data and prioritizing the business needs of your organization. Once your best use cases have been identified, implementation is often a challenge, as many organizations lack the expertise on their teams, or even compliant access to their data, to implement the machine learning solutions.

Q. Where does the ML Solutions Lab fit in?

The Machine Learning Solutions Lab addresses each of these challenges. It pairs the customer's team with AWS machine learning experts who are data scientists. This team of data scientists and business consultants works to help identify and build machine learning solutions to address high-value machine learning opportunities and a path to production. Once we develop that plan, we can even provide a professional services team to help implement if needed.

We also offer educational training for technical team members, the same machine learning curriculum we use to train AWS engineers and scientists. For business leaders, there’s training aimed at teaching them ways to think about AI so they can better understand both what is possible and how AI might be used to address their business challenges.

Not every problem is solvable by machine learning, but business leaders today should have some understanding of AI and ML, and when it can be used to achieve operational efficiencies and competitive advantage.

Q. Has COVID-19 changed what you are doing?

We're seeing an increased use of AI and ML in a number of areas in response to the pandemic, from research to healthcare. Rarely before has the pace of research and publication been so furious. That’s understandable given the global medical crisis we face. While more research is good, it is hard for scientists to discover research relevant to their work given the exponentially increasing volume of information.

That’s why AWS built the CORD-19 Search tool using services like Amazon Comprehend Medical and Amazon Kendra. This new search tool, powered by machine learning and hosted at CORD19.aws, allows researchers to get answers to questions like, “What do we know about COVID-19 risk factors?” and “Are IL-6 inhibitors key to COVID-19?” or “Which medications were most beneficial in the 2002 SARS outbreak?”

Built on the Allen Institute for AI’s CORD-19 open research dataset of more than 128,000 research papers and other materials, this machine learning solution can extract relevant medical information from unstructured text and delivers robust natural-language query capabilities, helping to accelerate the pace of discovery. 

In the field of medical imaging, meanwhile, researchers are using machine learning to help recognize patterns in images, enhancing the ability of radiologists to indicate the probability of disease and to diagnose it earlier. More generally, all organizations are adjusting to the post-pandemic world, finding new ways to operate effectively and meet customer and employee needs as social distancing and quarantine measures remain in place. Machine learning is facilitating that shift by providing the tools to support remote communication, enable telemedicine, and protect food security, for example.

Q. What inspired you to choose Amazon?

In my prior position, I led a 200-year-old governmental agency, the United States Patent Trademark Office. Part of my job involved digitally transforming the agency. Because of my background at the MIT Artificial Intelligence Lab and with a big data company, I recognized that there was a tremendous opportunity to revolutionize the Patent Office’s business using AI and data analytics.

Michelle K. Lee's USPTO swearing in ceremony

We implemented some basic AI and data analytics solutions to improve the quality and consistency of the patents issued by the patent office. What I came to realize is if the USPTO has machine learning opportunities, so does every organization. The challenge is to identify those opportunities and to have a plan and team to implement them. However, that is often easier said than done.  At the USPTO, there was no way I could hire the talent — the data scientists or machine learning experts — that I have the privilege of working with today at Amazon. And that's what inspired me to lead the ML Solutions Lab at AWS.

As I mentioned earlier, we are a global team of data scientists and business consultants, who work side-by-side with our customers to identify their highest return-on-investment machine learning use cases and to help our customers implement them. What makes this fun and challenging is we do so through ideation sessions, hands-on-keyboard proofs of concepts to illustrate viability, and implementation to production. And we do so bringing learnings from 20 plus years of Amazon’s ML innovations in areas such as fulfillment and logistics, personalization and recommendations, computer vision, translation, fraud prevention, and forecasting and supply chain optimization.

Q. In your capacity as a leader, how do you view diversity?

Diversity in views and experiences is critical to innovation because, by definition, innovations require thinking outside of the box, finding a solution to an existing problem that no one has ever seen before. The broader the perspectives and experiences on the team, the greater the chances for that spark of innovation.

As a leader, I find that I make better decisions when team members challenge my thinking and offer contrary views. I welcome — in fact, I seek out — those contrary views, because the issues facing AI and ML require interdisciplinary approaches. No one person's going to have a complete view and perspective on all the issues relevant to AI and machine learning.

Q. What would you say to women considering a career in ML?

If that's your goal, pursue it with a passion. Don't wait for people who look like you to do what you know needs to be done. I have often been one of a few, or even the only woman, in the room or sitting at the table. Whether that was as a graduate student at the MIT AI Lab and the PhD program, or the first Asian American woman elected partner in my law firm, or the first woman appointed by the president of the United States to lead the United States Patent and Trademark Office. If I waited for people who looked like me to do what I did, I'd still be waiting.

That said, I am very encouraged to see the growing diversity within the field of AI and ML. We all have a long way to go still, but there are brilliant pioneers paving the way for future generations — and I look forward to seeing more in the future.

Research areas

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.