De'Aira Bryant, who has done two internships at Amazon, and is a fourth-year computer science PhD student at the Georgia Institute of Technology, is seen posing in front of a wall with some transportation logos and Amazon Web Services written on it
De'Aira Bryant, who has done two internships at Amazon, is a fourth-year computer science PhD student at the Georgia Institute of Technology, where her research focuses on the application of robotics in health care and rehabilitation.
Courtesy of De'Aira Bryant

How De’Aira Bryant found her path into robotics

The computer scientist recently finished her second internship at Amazon, where she worked on a new way to estimate the human expression on faces in images.

Growing up in Estill, South Carolina, De’Aira Bryant didn’t know she was interested in computer science until she was persuaded to explore the field by her mother, who noted that computer scientists have good career prospects and get to do interesting work.

“I was handy with making flyers and doing the programs for church, that type of thing,” Bryant says. “She somehow convinced me that was computer science and I had no way to know better.”

In her first class as a computer science major at the University of South Carolina (UofSC), she realized that she didn’t really know what computer science entailed. “I was completely out of my league, coming from a small town with no computer science or robotics background at all.”

De'Aira Bryant is seen standing on a stage with a screen elevated above her in the background showing robots at her TEDx Talk
At her TEDx talk, De'Aira Bryant discussed how lessons from society's technological past can shed light on embracing a future with social robots.
Courtesy of De'Aira Bryant

Bryant immediately wanted to change her major, but Karina Liles — the graduate teaching assistant and the only female TA in the program at that time — convinced her to stay. “We were doing that ‘Hello, World!’ program and I was like: Do you want me to type it on Word? What do you mean, I'm writing a program?” Bryant remembers Liles looked at her in astonishment and set out to help her.

After the initial shock, Bryant started to thrive.

“It actually worked out for me, because I've always been really good at math, I also got a minor in math. And later I realized that what I actually like is logic, which was perfect for a computer science student at UofSC, because a lot of courses focused on the principles of logic.”

It turned out her mother was right after all.

Today, she’s a fourth-year computer science PhD student at the Georgia Institute of Technology, where her research focuses on the application of robotics in health care and rehabilitation. Over the years, Bryant has received research awards, given a TEDx Talk, and even programmed a robot that starred in a movie. Having recently completed her second internship at Amazon Web Services (AWS), she still finds time to think about fun and exciting ways to make computer science more accessible to diverse populations.

Making robots dance (and act)

Right after her first class, Bryant was invited by Liles, the TA, to do an internship at Assistive Robotics and Technology Lab (ART lab), headed by Jenay Beer, who was Liles’ advisor at the time and also played a crucial role in Bryant’s education at UofSC. (Currently, Liles is a professor at Claflin University and Beer is a professor at the University of Georgia.) Bryant didn’t think twice before accepting.

“I have my own desk, and I’m getting paid? Sign me up! What better job could there be?” she remembers thinking. She worked on designing systems for children in schools that did not have computer science curriculums, using robots as a method of engagement and exposure.

Initially, she would prepare the robots for studies, take them in the field, and watch kids interact with them. Later, she got to take crash courses to learn how to program them. “I don't think I was interested in robotics until I got to see to see how they were used, their application in the real world,” she says. The fact that she loved seeing them in action made her want to learn how to make them work.

As an undergrad, she started to program these robots to do short dance moves. She posted those clips to her social media, which piqued the curiosity of kids who followed her.

An unexpected journey: De'Aira Bryant

“I thought, ‘I'm going to trick them into asking more questions and I'm going to recruit more computer scientists by posting robots dancing,’” she says. “That kind of turned into a thing. Now I have a whole social media presence on making robots dance and do cool stuff.”

Bryant is deeply interested in changing the way computer science is taught.

From a culturally relevant perspective, a lot of the ways that we teach these concepts can miss the mark with a lot of students, especially students who come from minority backgrounds.
De'Aira Bryant

“From a culturally relevant perspective, a lot of the ways that we teach these concepts can miss the mark with a lot of students, especially students who come from minority backgrounds.” She says that throughout her computer science curriculum, a lot of the examples and problems proposed by the professors were not relevant to her. “I would completely rewrite the problem and that was how I was able to make it through my undergrad and graduate education.”

Currently, her main research at the Georgia Institute of Technology is focused on the applications of robotics on rehabilitation for children who have motor and cognitive disabilities.

“That kind of attracted me and now we have more robots and more resources and we’re linked with rehabilitative therapy centers in Atlanta and getting to work in those places as well,” she said.

Bryant still uses the expertise she acquired with the dancing robots. When HBO Max was filming the movie Superintelligence on Georgia Tech’s campus in 2019 and wanted to add cool futuristic robot scenes, Bryant’s adviser, Ayanna Howard, who today is dean and professor in the College of Engineering at Ohio State University, said she would be the right person for the job.

She had two weeks to prepare.

By the time she got to the set, the script had changed and she ended up having to redo the work on the set. “I was programming in real-time. And I think the movie people were so excited about that. They were standing over my shoulders saying, 'You’re actually coding.'” Bryant got to meet Melissa McCarthy, the star of the movie, and teach her kids how to make the robot move. “They all wanted pictures with the robot. I felt like my robot was the biggest star on the set.”

Interning at Amazon

Bryant then met Nashlie Sephus, a machine learning technology evangelist for AWS, at the National GEM Consortium Fellowship conference in 2019 (Bryant is a current GEM fellow and Sephus is an alum). After Bryant presented her research during a competition, Sephus approached her. “She said, ‘The work you're doing is very similar to what my team is doing at Amazon, and I think it would be really awesome if you came to work with us’,” Bryant recalls.

Sephus focuses on fairness and identifying biases in artificial intelligence, areas that Bryant was beginning to explore. She applied to the 2020 summer internship, went through the interview process, and got to work directly with Sephus.

During Bryant’s first AWS internship, she worked on bias auditing of services that estimate the expression of faces in images, an active area of research within academia and industry. In Bryant’s robotics healthcare research at Georgia Tech, the robots utilize emotion estimation to help identify what the patient they're working with is feeling in order to inform what they should do or say next.

This summer, during her second AWS internship, Bryant researched how to potentially improve the way the emotion being expressed on a person’s face is estimated. Other research within Amazon on emotion estimation entails making a determination of the physical appearance of a person's face. It is not a determination of the person’s internal emotional state. Currently, the way researchers generally train machine learning models for that type of estimation is by annotating numerous face images. Each image is labeled with a single emotion — happiness, sadness, surprise, disgust, or anger.

“We see that a lot of people disagree in their interpretations of the expressions on some faces. And what normally happens if a face has too many people disagreeing on the emotion it is expressing is that we throw it out of the dataset. We say it's not a good way to teach our models about emotion,” Bryant says. She thinks that maybe that’s exactly what the system should be learning. “We should be teaching it ambiguity just as much as we are teaching it about things of which we are absolutely sure.”

To that end, the team she was on explored letting people rate a series of emotions on a scale for each image, instead of labeling it with a single emotion. “Instead of throwing out the images, we can model that into a distribution that tells us: most people see this image as happy, but there is a significant amount of people who also see it as surprise.”

Even after the end of her internship, Bryant continues to work with her team to write a paper to describe some of the work they did over the last two summers.

“It's been a big project, but we have enough now that we're ready to put out a paper. So, I'm excited about that.”

Bryant recently got a return offer to come back to Amazon next summer, possibly to work on a partnership between Sephus’s team and the robotics team. “I haven't done anything with robotics at Amazon yet so I would actually love to see what they're doing over there, so the offer is very appealing.”

What robots should look like

Another area of research for Bryant is understanding how people conceptualize a robot based on its perceived abilities. There is an ongoing debate in robotics circles about whether developing humanoid robots is a good thing. Among other aspects, the controversy has to do with the fact that they are expensive to build and deploy.

“A lot of people are questioning: 'Do we even really need to be designing humanoids?’,” she says.

Bryant, along with colleagues at Georgia Tech who are interested in robots that are capable of perceiving emotions, designed an experiment to investigate how people imagine a robot’s appearance based on what it can do. The study’s participants worked on an emotion annotation activity with the assistance of an expert artificial intelligence system that followed a set of rules. The participants were told that “a robot is available to assist you in completing each task using its newly developed computer vision algorithm.”

De'Aira Bryant is seen from behind, she is typing on an open laptop and there is a humanoid robot with a display tablet on its chest looking at her to the right of the laptop
De'Aira Bryant and her colleagues at Georgia Tech designed an experiment to investigate how people imagine a robot’s appearance based on what it can do.
Courtesy of De'Aira Bryant

But the researchers did not tell them what the robot looked like. The robot’s predictions were provided via text. At the end of the study, participants were asked to describe how they envisioned it in their heads. Half of the people envisioned the robot with human-like qualities, with a head, arms, legs and the ability to walk, for example.

For that work – described in the article “The Effect of Conceptual Embodiment on Human-Robot Trust During a Youth Emotion Classification Task” — Bryant and her colleagues won the best paper award in the IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO2021).

The goal of the research: investigate factors that influence human-robot trust when the embodiment of the robot is left for the user to conceptualize.

“In that paper, we presented the method of trying to gauge how humans expect a robot to look based on what it can do. That was one of the contributions,” says Bryant. The other contribution: demonstrate that it can be beneficial for a robot to look a certain way depending on its function. The study found that the participants who imagined the robot with human-like characteristics reported higher levels of trust than those who did not.

“For the robots that are emotionally perceptive, if we fail to meet the expectations of most people, then we could already be losing some of the effect that we intend to have,” says Bryant. “People expect that a robot that can perceive emotions will be human-like and if we don't design robots in that way, people could be less willing to depend on that robot.”

Future career plans

Bryant says that her long-term career plans are constantly changing. She was set on being a professor, but her experience at Amazon has redefined what industry research is for her. “On the last team I was on, I was actually working with a lot of professors. And I think it’s so cool to have the ability to bridge that gap.”

When she was about to start her first AWS internship, she expected she would be given a project, a few tasks, a deadline to complete them, and wouldn’t have a lot of say in that. “But when I first got there I actually did have a lot of say. They were interested in what I was doing at Georgia Tech, they wanted to know more about my research and made a strong effort to make the internship experience mine,” she says.

One of her ideas of a perfect job is being an Amazon Scholar. “I would get to work with students in a university and still work with Amazon. That is the perfect goal.”

Research areas

Related content

GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA