A city crew truck is seen driving down a flooded street in a downpour
Lise St. Denis, a research scientist at the University of Colorado’s Earth Lab, has spent the past half-decade figuring out how to find useful information on social media in the wake of natural disasters like the flooding seen here.
Mario Beauregard/Adobe

Finding critical information during disasters

Lise St. Denis, a research scientist at the University of Colorado, says social media can be useful for responders. Now she's helping them separate truly useful info from the noise.

Twitter, apart from being a place to catch up on niche topics and post personal takes on the latest news, can be a useful source of vital information during disasters.

Lise St. Denis, a research scientist at the University of Colorado’s Earth Lab, notes social media sites of all stripes can be useful in storms, but also in wildfires, floods, hurricanes, and other natural disasters — because fast, local information is essential in these situations. However, separating truly useful info from the noise is key, which is what St. Denis has been working on for the past half-decade.

“My big vision is that emergency response teams and communities impacted by disasters could get the best possible information out in real time so communities can be optimally informed about what's happening,” she says.

This kind of work requires a marriage of creative thinking and technology, something St. Denis, a 2019 AWS Machine Learning Research Award recipient, has pursued since the beginning of her career.

Lise St. Denis is seen wearing a mask and standing, on the left, while teaching a recent graduate seminar. There is a display screen behind her and two students, also masked, are seen sitting.
Lise St. Denis is seen standing while teaching a recent graduate seminar. After earning her PhD at the University of Colorado in 2016, St. Denis stayed on and is now a research scientist at Earth Lab
Courtesy of Lise St. Denis

At least as far back as college, St. Denis has had a variety of interests she took seriously, despite their seeming disparity. Her undergrad degrees from Colorado State University are in fine arts and computer science. That brought her to illustration and software engineering in her early working life, first at Hewlett Packard. HP supported her graduate work in human factors engineering at the University of Idaho.

She took a break when she had children in the early 2000s, and when she was ready to return to the workforce, she realized she wanted to refine her skills. “I still had a lot of the same interests, but with a different life perspective — I was older. I wanted to do something that I felt like I was making a difference,” says St. Denis. So she went back to graduate school in 2011 initially for a masters in computer science, which led her to the University of Colorado where she discovered Project EPIC (Empowering the Public with Information in Crisis) where she decided to pursue an interdisciplinary doctorate in crisis informatics.

As part of the work for her degree, she met a group of emergency responders, became fascinated by their work, and set out to learn more. She realized that one big challenge they faced was getting the word out to the public. Could, she wondered, social media sites help gather and distribute information?

So when she heard about a plan in New Mexico to adapt the idea of digital volunteerism to emergency risk response — the volunteers in this case would be emergency responders — she went to learn from them.

At the time, social media wasn’t widely embraced within the emergency response field; St. Denis even knew government officials who risked their jobs using social media at work. “A lot of emergency response organizations just saw social media, not as useful, but as more of a hotbed for misinformation and rumor,” says St. Denis.

Even in light of that, some emergency managers remained interested: “As social media gained popularity, they knew this is where they needed to provide updates, engage with a growing audience, and look for breaking information,” recalls St. Denis.

“They formed this network of teams that were called Virtual Operational Support Teams. These teams are known ahead of time and activated through formal emergency protocols and procedures. The first emergency trial of the concept was during the 2011 Shadow Lake Fire in Eastern Oregon. I ended up studying the innovations of this network of teams, and I worked within this community, alongside them, to understand what they were doing,” she explained.

Their work made sense to St. Denis, and so, instead of getting that master’s in computer science, she ended up using what she had learned in New Mexico as a basis for her cross-disciplinary PhD, which included computer science, but also incorporated classes in communication and sociology of disaster.

In 2014, St. Denis was asked to bring her reporting and analysis social media skills to the Carlton Complex fire in Eastern Washington. That fire burned through several communities with a high number of structures lost and very short evacuation windows. Unable to keep up with the speed of the fire’s impact, locals had no way to get their questions answered and there was, understandably, a lot of frustration.

“That convinced me that there had to be a better strategy for filtering and getting to the most relevant information needed during these events,” she says.

She was also wrangling data and doing analysis, and consolidating that information for the teams she was supporting. As part of her research, St. Denis was a part of close to 100 emergency response activations. “I studied the integration of social media into emergency response through virtual teams,” she explains. “And I kept asking myself, ‘What does it mean to integrate them?’”

Fast forward to today and she’s still researching that basic question. After earning her PhD at the University of Colorado in 2016, St. Denis stayed on at the university and is now a research scientist at Earth Lab. “We have all this existing information from all these different sources, and we want to do a better job of making it available so scientists can leverage it and make use of it for hazards analysis.”

Thus far, Twitter has shown the most promise for what St. Denis hopes to implement. The idea is that an emergency manager would receive a live stream of truly useful content, including selected tweets from reliable sources. “The managers could keep an eye on that as part of their emergency management response,” says St. Denis.

This is extremely practical, real-world information, that can help save lives because it is personalized, says St. Denis. The information is coming from community members who are directly impacted by these disasters. “It's not the media coverage or the broad outside information,” says St. Denis. “It contains new information such as what roads are passable or where fuel outages exist” or where information gaps exist such as, ‘I don't know where to evacuate my livestock,’ or ‘I need to know who has gas,’ or ‘Is my water supply safe to drink?’”

And while her research hasn’t yet translated into an actual tool for emergencies, St. Denis sees the light around the corner. She recently became part of the Pandemic Hyper-Accelerator for Science and Technology (PHAST). “As part of the PHAST program I have been paired with skilled entrepreneurs who are helping me to look at my problem from a systematic, opportunity-driven perspective,” she explains. “We’ve been interviewing emergency response and crisis response professionals across different contexts to understand specifics about the tools they are using, as well as the specific values of or consequences for information when it is found or not found.”

Utilizing machine learning

St. Denis first realized she would need to utilize machine learning when studying data from the Carlton Complex fire. “I realized that I had some intuition for how I could take the noise off the top to get to the information that I wanted. But the only way that was going to matter is if I could do that in near real time — which would require machine learning,” she says. So she applied for an AWS Machine Learning Research Award and received it in 2019.

She and her team used AWS Lambda and AWS Fargate to query the Twitter API for relevant tweets, and stored the raw data in Amazon S3. St. Denis also used standard machine learning libraries to build her prototype because she wanted everything to be open source. “We're hoping, as we move forward, to move into more sophisticated data collection and AWS tools,” she says.

St. Denis and her team have published two papers on the design of the work done so far, and proved that the prototype they’ve built works equally well across multiple types of hazards. They’ve even used it for work they did examining US-based public response to stay-at-home orders at the onset of the COVID-19 pandemic.

“I have spent over a decade working with some of the most innovative responders in the field, but fundamentally nothing has changed in terms of tools,” she says. “I think that this social media-based tool has a lot of potential, and so it's been really exciting. Now that I have this starter funding, it could go pretty quickly.”

Related content

US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking interns and co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, and planning/scheduling. You will be challenged intellectually and have a good time while you are at it! Key job responsibilities • Identifying creative solutions for challenging research problems in robotics and computer vision • Developing software solutions to test hypotheses and demonstrate new functionality • Prototyping concepts to collect data and measure performance • Writing code and unit tests and integrating code with other software and hardware components • Utilizing Amazon Robotics and Amazon engineering tools, processes and technologies • Delivering a final presentation to managers and engineers on the successes and challenges of their internship and the business value they have contributed
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.