Build on Trainium call for proposals — Spring 2025

Building the future of AI with AWS Trainium.

About this CFP

What is Build on Trainium?
Build on Trainium is a $110MM credit program focused on AI research and university education to support the next generation of innovation and development on AWS Trainium. AWS Trainium chips are purpose-built for high-performance deep learning (DL) training of generative AI models, including large language models (LLMs) and latent diffusion models. Build on Trainium provides compute credits to novel AI research on Trainium, investing in leading academic teams to build innovations in critical areas including new model architectures, ML libraries, optimizations, large-scale distributed systems, and more. This multi-year initiative lays the foundation for the future of AI by inspiring the academic community to utilize, invest in, and contribute to the open-source community around Trainium. Combining these benefits with Neuron software development kit (SDK) and recent launch of the Neuron Kernel Interface (NKI), AI researchers can innovate at scale in the cloud.

What are AWS Trainium and Neuron?
AWS Trainium is an AI chip developed by AWS for accelerating building and deploying machine learning models. Built on a specialized architecture designed for deep learning, Trainium accelerates the training and inference of complex models with high output and scalability, making it ideal for academic researchers looking to optimize performance and costs. This architecture also emphasizes sustainability through energy-efficient design, reducing environmental impact. Amazon has established a dedicated Trainium research cluster featuring up to 40,000 Trainium chips, accessible via Amazon EC2 Trn1 instances. These instances are connected through a non-blocking, petabit-scale network using Amazon EC2 UltraClusters, enabling seamless high-performance ML training. The Trn1 instance family is optimized to deliver substantial compute power for cutting-edge AI research and development. This unique offering not only enhances the efficiency and affordability of model training but also presents academic researchers with opportunities to publish new papers on underrepresented compute architectures, thus advancing the field.

Below are key topics Build on Trainium is exploring to drive innovation and enhance the future of AI/ML on AWS. Please develop your proposal addressing one or more of these topics in detail, unless you know better ones.

  1. Novel kernels and compiler extensions for Trainium. With the recent launch of the Neuron Kernel Interface (NKI), we welcome projects that identify improvement areas such as kernels and compilation artifacts. This could be through implementing an algorithm which was not previously supported on Trainium, improving performance on a known bottleneck, or some other solution. Kernels that are already available on NKI are available here.
    1. Mixture of expert training and hosting, particularly kernels which optimize these compute patterns. We also invite projects which explore ambitious test-time compute requirements and identify kernel-based solutions for these.
    2. Kernels to improve model distillation and fine-tuning recipes, such as from a compute perspective. We are inviting researchers to study the compute workloads of model distillation and fine-tuning regimes, including multi-stage. We invite PIs to develop novel kernels which improve these.
    3. Quantization, such as developing high performance kernels that enable and explore the impact of quantization for language models.
    4. Novel projects to generate NKI kernels under various conditions, such as improvements upon existing compilation paths, novel bindings, and more.
  2. Novel algorithms for large language models. As demand increases for integrating language models across services and applications, so too does the need to increase performance while lowering costs. The growing diversity of applications and use cases creates new opportunities for hardware-centric machine learning solutions. Towards that end, we request the development of novel algorithms for large language models, such as:
    1. Improvements on attention, quantization, embedding generation and processing within neural networks.
    2. Extensions on context length and necessary algorithms for these.
    3. Ability to reason. As the complexity of questions sent to AI increases, so too must the ability of language models to address them correctly and efficiently. We invite proposals that study reasoning and show improvement in this area.
    4. Beyond Transformers. We invite projects that explore novel ways of learning sequences beyond the standard matrix multiplication-based Transformer architecture. In particular we invite proposals that show superior results to Transformers at much smaller scales, while containing the promise of better results at larger scales.
    5. Multiple modalities. We invite proposals that hope to improve upon existing algorithms which combine language with other modalities. This includes language jointly trained with vision, robotics, etc. We also invite projects which expand the overall breadth of model support on Trainium.
    6. Model adaptation, fine-tuning, and alignment, such as post-training. We invite proposals that discover novel algorithms to improve this space, with a high focus on GRPO and similar techniques.
  3. Systems improvements for distributed training and hosting. In this section we invite proposals that adopt a systems perspective around distributed training and hosting for large foundation models. This can include topics along the following:
    1. Improvements for distributed systems for mixture of experts (MoE), including perspectives that explore the implications for this from data, network, and topology perspectives.
    2. Improved training efficiency during scale-out training, including checkpoint acceleration and minimizing data movement overhead introduced through this.
    3. Faster and more resource efficient hosting, especially distributed inference. We also invite hosting-aware training regimes that attempt to mitigate the computational challenges of hosting models by early-stage changes in the training methodology
    4. Performance analysis tooling and fault handling, including the development of novel performance methodologies. We welcome projects that aim to improve KPIs for foundation models at scale, such as MFU, HBMu, TTFT, TPS, etc.
  4. Streamline development. In this section, we invite the study and development of tools that accelerate the adoption of AI through a simplified developer experience. We invite proposals around the following:
    1. Automation to reduce the search space time in finding optimal compute architectures and model parameters.
    2. Automation to reduce development work in migration across accelerator architectures.
    3. Studying broadly adopted compute orchestration platforms and identifying novel enhancements for them, such as incorporating distributed system benefits and reducing operator complexity. Overall we welcome work that seeks to minimize operator intervention in distributed training

Technical deep dive: Your approach to building on Trainium

We invite applicants to study the Trainium and Inferentia accelerator design, available software libraries and our samples for Trainium. We welcome your detailed perspective about this toolset. We want to know what you think about how well the specific models and operations you intend to leverage in your research proposal should work on Trainium, giving the existing tools you see available today. Please plan on bringing your educated perspective about your approach to building on Trainium into the proposal.

Applicants are strongly encouraged to test small versions of their proposed software stacks on the Trainium and/or Inferentia instance families, using Neuron SDK solutions like NxD and NKI, in advance of submitting their proposals. The most compelling and ambitious proposals will present empirical results of their tests in the proposal itself. For details about how to get started on Trainium, follow instructions here.

Timeline

Submission period: March 19 to May 7, 2025 (11:59PM Pacific Time).
Decision letters will be sent out by August 2025.

Award details

Selected Principal Investigators (PIs) may receive the following:

  1. Applicants are encouraged to request AWS Promotional Credits in one of two ranges:
    1. AWS Promotional Credits, up to $50,000
    2. AWS Promotional Credits, up to $250,000 and beyond
  2. AWS Trainium training resources, including AWS tutorials and hands-on sessions with Amazon scientists and engineers

Awards are structured as one-time unrestricted gifts. The budget should include a list of expected costs specified in USD, and should not include administrative overhead costs. The final award amount will be determined by the awards panel.

Your receipt and use of AWS Promotional Credits is governed by the AWS Promotional Credit Terms and Conditions, which may be updated by AWS from time to time.

Eligibility requirements

Please refer to the ARA Program rules on the Rules and Eligibility page.

Proposal requirements

PIs are encouraged to exemplify how their proposed techniques or research studies advance kernel optimization, LLM innovation, distributed systems, or developer efficiency. PIs should either include plans for open source contributions or state that they do not plan to make any open source contributions (data or code) under the proposed effort. Proposals for this CFP should be prepared according to the proposal template and are encouraged to be a maximum of 3 pages, not including Appendices.

    Selection criteria

    Proposals will be evaluated on the following:

    1. Creativity and quality of the scientific content
    2. Potential impact to the research community and society at large
    3. Interest expressed in open-sourcing model artifacts, datasets and development frameworks
    4. Intention to use and explore novel hardware for AI/ML, primarily AWS Trainium and Inferentia

    Expectations from recipients

    To the extent deemed reasonable, Award recipients should acknowledge the support from ARA. Award recipients will inform ARA of publications, presentations, code and data releases, blogs/social media posts, and other speaking engagements referencing the results of the supported research or the Award. Award recipients are expected to provide updates and feedback to ARA via surveys or reports on the status of their research. Award recipients will have an opportunity to work with ARA on an informational statement about the awarded project that may be used to generate visibility for their institutions and ARA.

    IN, HR, Gurugram
    We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
    US, MA, Boston
    The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
    IN, HR, Gurugram
    Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
    US, WA, Seattle
    Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
    US, MA, Boston
    The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
    IN, KA, Bengaluru
    The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
    IN, KA, Bengaluru
    The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
    IN, KA, Bengaluru
    Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
    US, WA, Seattle
    The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
    US, WA, Seattle
    Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
    Amazon Research Awards.jpg

    Amazon Research Awards

    Collaborating with scientists around the world to fund research, share knowledge and encourage innovation.