-
Effective attribution of causes to outcomes is crucial for optimizing complex supply chain operations. Traditional methods, often relying on waterfall logic or correlational analysis, frequently fall short in identifying the true drivers of performance issues. This paper proposes a comprehensive framework leveraging data-driven causal discovery to construct and validate Structural Causal Models (SCMs).
-
AI and Deep Learning methods have revolutionized many forecasting applications but have not achieved widespread adoption in industry for aggregate forecasting. This paper challenges the AI research community by identifying three critical capabilities that current AI approaches lack: (1) multivariate consistency at scale, (2) explainable and controllable longrun assumptions, and (3) flexible incorporation
-
International Journal of Research in Marketing2025In 2020, Amazon launched the Climate Pledge Friendly (CPF) program to make it easy for customers to discover and shop for products with sustainability certifications. In this paper, we measure the causal impact of products qualifying for CPF on consumer purchase behavior. Using a dataset of about 45,000 products spanning three categories, and a Differencein-Differences identification strategy, we show that
-
AAAI 2025 Workshop on AI for Social Impact2025To the best of our knowledge, this work introduces the first framework for clustering longitudinal data by leveraging time-dependent causal representation learning. Clustering longitudinal data has gained significant attention across various fields, yet traditional methods often overlook the causal structures underlying observed patterns. Understanding how covariates influence outcomes is critical for policymakers
-
2023 Conference on Digital Experimentation @ MIT (CODE@MIT), NeurIPS 20242024This paper introduces the confounded pure exploration transductive linear bandit (CPET-LB) problem. As a motivating example, often online services cannot directly assign users to specific control or treatment experiences either for business or practical reasons. In these settings, naively comparing treatment and control groups that may result from self-selection can lead to biased estimates of underlying
Related content
-
October 10, 2023The system has expanded from generating peak computation-load forecasts one year in advance to a series of forecasts that include per-minute forecasts several months into the future.
-
October 5, 2023Wharton professor Jessie Handbury lends her expertise to Amazon’s PXTCS Team as an Amazon Visiting Academic.
-
September 19, 2023The new Fulfillment by Amazon system empowers sellers to have more transparency and control over their capacity within Amazon’s fullfilment network by applying market-based principles.
-
June 22, 2023Kanoria and coauthors honored for their paper narrowing the gap between theoretical understanding and practical experience in matching markets.
-
June 2, 2023In a plenary talk, the Berkeley professor and Distinguished Amazon Scholar will argue that AI research should borrow concepts from economics and focus on social collectives.
-
April 14, 2023The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.