Leveraging customer reviews for e-commerce query generation
2022
Customer reviews are an effective source of information about what people deem important in products (e.g. “strong zipper” for tents). These crowd-created descriptors not only highlight key product attributes, but can also complement seller-provided product descriptions. Motivated by this, we propose to leverage customer reviews to generate queries pertinent to target products in an e-commerce setting. While there has been work on automatic query generation, it often relied on proprietary user search data to generate query-document training pairs for learning supervised models. We take a different view and focus on leveraging reviews without training on search logs, making reproduction more viable by the public. Our method adopts an ensemble of the statistical properties of review terms and a zero-shot neural model trained on adapted external corpus to synthesize queries. Compared to competitive baselines, we show that the generated queries based on our method both better align with actual customer queries and can benefit retrieval effectiveness.
Research areas