Recent honors and awards for Amazon scientists

Researchers honored for their contributions to the scientific community.

Rahul Urgaonkar wins IEEE Communications Society William R. Bennett Prize

Rahul Urgaonkar, a senior applied scientist with Amazon Advertising, and his co-authors Kevin Spiteri and Ramesh K. Sitaraman, were selected for the IEEE Communications Society William R. Bennett Prize earlier this year.

Rahul Urgaonkar, a senior applied scientist with Amazon Advertising
Rahul Urgaonkar

The authors were honored for the 2020 paper, “BOLA: Near-Optimal Bitrate Adaptation for Online Videos”, during the annual IEEE International Conference on Communications (ICC) in May in Rome. The award recognizes the publication of an original paper published in the IEEE/ACM Transactions on Networking or the IEEE Transactions on Network and Service Management in the previous three years

Urgaonkar, who contributed to the paper in his former role as a senior research scientist with Prime Video, noted BOLA is an acronym for Buffer Occupancy based Lyapunov Algorithm. “It’s a new algorithm for adaptive bitrate streaming (ABR), which refers to the set of techniques used by modern video players to optimize the playback performance of videos streamed online,” he explained.

BOLA offers significant improvements in streaming performance across a range of metrics such as frequency of re-buffers/pauses during playback or the quality of videos shown.

“These metrics directly impact customer experience with Prime Video and optimizing them is important to maximize user engagement and satisfaction with the service. From a research perspective, BOLA was the first ABR algorithm that used a mathematical utility maximization framework to provide theoretically rigorous performance guarantees. It has since become a highly cited paper and is regularly used by other researchers in benchmarking their algorithms.

Urgaonkar, who now works with the Amazon Demand Side Platform team, said he was thrilled to win the award. “It is a recognition of the impact of this work, both in terms of advancing the state-of-the-art and its practical utility. It was also an opportunity to showcase the amazing work being done at Amazon Prime Video to the broader research community.”

Yizhou Sun receives multiple honors

Yizhou Sun, an Amazon Scholar and associate professor of computer science at the University of California, Los Angeles (UCLA) recently received multiple honors. Sun works a Scholar in Amazon Ads where she is constructing a heterogeneous information network based on Amazon Ads data.

Yizhou Sun, an Amazon Scholar and associate professor of computer science at the University of California, Los Angeles (UCLA)
Yizhou Sun

She was named on the IEEE Intelligent System’s “AI’s 10 to Watch” list in March. Sun was cited as “pioneer in heterogeneous information network (HIN) mining, with a recent focus on deep graph learning, neural symbolic reasoning, and providing neural solutions to multiagent dynamical systems. Her work has a wide spectrum of applications, ranging from e-commerce, health care, and material science to hardware design.”

Earlier this year, Sun also received the SIAM International Conference on Data Mining (SDM23) Early Career Data Mining Research Award. That award recognizes “one who has made outstanding, influential, and lasting contributions in the field of data analysis” within 10 years of receiving their PhD. Sun earned her PhD in computer science from the University of Illinois at Urbana-Champaign in 2012.

Finally, Sun and her co-authors won the The Web Conference Best Student Paper Award — meaning it was a top 2 paper among 1,8000 submissions — at the ACM Web Conference in May for their paper, "A Single Vector Is Not Enough: Taxonomy Expansion via Box Embeddings".

Sun is also a two-time recipient of an Amazon Research Award. She won her 2018 award from Amazon’s Product Graph Team and her 2020 award from the Deep Graph Learning Team.

Pooyan Amir-Ahmadi wins 2023 QE Best Paper Prize

Pooyan Amir-Ahmadi
Pooyan Amir-Ahmadi

Pooyan Amir-Ahmadi, a senior economist on the Supply Chain Optimization Technologies (SCOT) team, and his co-author Thorsten Drautzburg received the 2023 Quantitative Economics Best Paper Prize Awarded from the Econometric Society. The authors were honored for their 2021 paper, “Identification and Inference with Ranking Restrictions".

The Econometric Society is “an international society for the advancement of economic theory in its relation to statistics and mathematics.” The prize alternates yearly between Quantitative Economics (where the award-winning paper was published in 2021) and Theoretical Economics. The single paper winner is selected from all papers published in the corresponding journal during the previous two years by an external committee.

Alexandros Potamianos elevated to ISCA fellow

Alexandros Potamianos
Alexandros Potamianos

Alexandros Potamianos, an Amazon Scholar and adjunct associate professor of electrical and computer engineering at the University of Southern California (USC) was named as a fellow of the International Speech Communication Association (ISCA).

Potamianos, who works as a Scholar with Amazon’s Alexa Natural Understanding team, was honored “for contributions to human-centered speech and multimodal signal analysis and conversational technologies”. He will be recognized at Interspeech 2023 in Dublin, Ireland, in August.

Alexandre Belloni receives Bank of America Faculty Award

Alexandre Belloni
Alexandre Belloni

Alexandre Belloni, an Amazon Scholar and the Westgate Distinguished Professor of Decision Sciences in the Fuqua School of Business at Duke University, received the 2022 Bank of America Faculty Award in April.

The Bank of America Award is Fuqua’s highest faculty honor and is given for outstanding contributions to the school in terms of teaching performance, research performance, leadership, and service to Fuqua, Duke University, and outside Duke.

Belloni, who joined Amazon as a Scholar in 2018, studies problems related to mechanism design and machine learning at Fulfillment by Amazon (FBA), the subdivision of Amazon’s Supply Chain Optimization Technologies (SCOT) organization for third-party sellers who use Amazon’s storage and fulfillment capabilities.

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Research Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Analyze complex healthcare data to identify patterns, trends, and insights • Develop and validate statistical methodologies • Collaborate with Applied Scientists to support model development efforts • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for data analysis, data curation, and model evaluation • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in statistics, knowledge of the complications of longitudinal healthcare data, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to prepare data, build ML models, validate model predictions and ensure statistical rigor in our approach. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team is building next-generation personalization systems powered by Large Language Models. We are tackling novel research challenges to help customers discover products they'll love - at Amazon scale and latency requirements. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Science Manager, you will lead a team of scientists working at the frontier of LLM-based personalization. You will set the technical vision, drive the research agenda, and ensure your team delivers production-ready solutions. You will hire, mentor, and develop world-class scientists while fostering a culture of innovation and scientific rigor. You will partner closely with engineering and product teams to translate ambitious research into customer-facing impact, and represent your team's work to senior leadership. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
We are looking for a Data Scientist to join our Prime Video team in Israel, focusing on personalizing customer experiences through Search and Recommendations. Our team leverages Machine Learning (ML) to deliver tailored content discovery, helping millions of customers find the entertainment they love. You will work on large-scale experimentation, measurement frameworks, and data-driven decision-making that directly shapes how customers interact with Prime Video. Key job responsibilities - Design metrics frameworks and evaluation systems to measure the quality, performance, and reliability of algorithmic solutions - Lead the design, execution, and analysis of A/B tests to validate product hypotheses and quantify customer impact - Communicate analytical findings and recommendations clearly to both technical teams and business stakeholders, driving data-informed decisions - Partner with Applied Scientists, Software Engineers, and Product Managers to define requirements, evaluate models, and drive data-informed product decisions - Act as the subject matter expert for data structures, metrics definitions, and analytical best practices - Identify opportunities for improving customer experience through deep-dive analyses of user behavior and algorithm performance
US, WA, Seattle
We are seeking a Senior Applied Scientist to join our team in developing pioneering AI research, Generative AI, Agentic AI, Large Language Models (LLMs), Diffusion and Flow Models, and other advanced Machine Learning and Deep Learning solutions for Amazon Selection and Catalog Systems, within the AI Lab Team. This role offers a unique opportunity to work on AI research and AI products that will shape the future of online shopping experiences. Our team operates at the forefront of AI research and development, working on challenges that directly impact millions of customers worldwide. We push the boundaries of AI at both the foundational and application layers. As a Senior Applied Scientist, you will have the chance to experiment with LLMs and deep learning techniques, apply your research to solve real-world problems at an unprecedented scale, and collaborate with experienced scientists to contribute to Amazon's scientific innovation. Join us in redefining the future of shopping. Your work will directly influence how customers interact with the world's largest online store. Key job responsibilities - Design and implement novel AI solutions for Amazon catalog of products - Develop and train state-of-the-art LLMs, Diffusion Models, and other Generative AI models - Build and deploy autonomous AI Agents in Amazon production ecosystem - Scale AI models to handle billions of diverse products across multiple languages and geographies - Conduct research in areas such as Autonomous AI Agents, Generative AI, Language Modeling, Multi-modality Computer Vision, Diffusion Models, Reinforcement Learning - Collaborate with cross-functional teams to integrate AI models into Amazon's production ecosystem - Contribute to the scientific community through publications and conference presentations
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.