careers-lead-image

Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in artificial intelligence and related fields.
  • The program is designed for academics from universities around the globe who want to work on large-scale technical challenges while continuing to teach and conduct research at their universities.
  • The program offers recent PhD graduates an opportunity to advance research while working alongside experienced scientists with backgrounds in industry and academia.
  • Our internship roles span research areas to provide hands-on experience working alongside world-class scientists and engineers to advance the state of the art in your field.
477 results found
  • US, NY, New York
    Job ID: 3108888
    (Updated 19 days ago)
    The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
  • US, CA, Sunnyvale
    Job ID: 3108893
    (Updated 19 days ago)
    The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
  • IN, KA, Bengaluru
    Job ID: 3108127
    (Updated 20 days ago)
    Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
  • (Updated 4 days ago)
    Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
  • (Updated 9 days ago)
    The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities The Principal Applied Scientist in Advertiser Guidance team will lead 50+ builders in pioneering a new generation of agentic AI applications for Amazon advertisers. You will define and lead the science roadmap of developing agentic experiences for recommendations and guidance delivered to +1.6MM Sponsored Products and Brand advertisers across multiple channels (Ad Console, Sales-managed, and 3P partners). You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. As a Principal Scientist, you will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across the Ads Org.
  • US, WA, Seattle
    Job ID: 3115128
    (Updated 9 days ago)
    Join us in the evolution of Amazon’s Seller business! The Selling Partner Growth organization is the growth and development engine for our Store. Partnering with business, product, and engineering, we catalyze SP growth with comprehensive and accurate data, unique insights, and actionable recommendations and collaborate with WW SP facing teams to drive adoption and create feedback loops. We strongly believe that any motivated SP should be able to grow their businesses and reach their full potential supported by Amazon tools and resources. We are looking for a Applied Scientist II to work on our seller prioritization to improve our SP growth strategy and drive new seller success. As a successful applied scientist on our talented team of applied scientists and economists, you will leverage the latest technology to solve complex problems, and collaborate with engineering, research, and business teams to deliver seller-centric experience on behalf of sour sellers. You need to have deep understanding on the business domain and have the ability to connect business with science. You are also strong in the latest technology and scientific foundation with the ability to collaborate with engineering to put models in production to answer specific business questions. You are an expert at synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication. You will continue to contribute to the research community, by working with scientists across Amazon, as well as collaborating with academic researchers and publishing papers (www.aboutamazon.com/research). Key job responsibilities As an Applied Scientist II in the team, you will: - Identify opportunities to improve SP growth and translate those opportunities into science problems via principled GenAI solutions . - Design and execute roadmaps for complex science projects to help SP have a delightful selling experience while creating long term value for our shoppers. - Work with our engineering partners and draw upon your experience to meet latency and other system constraints. - Be responsible for communicating our science innovations to the broader internal & external scientific community.
  • (Updated 4 days ago)
    Join the pioneering team behind Amazon's Generative AI shopping initiatives, Rufus - Amazon's flagship Shopping AI assistant. We're revolutionizing how millions of customers discover products through AI-powered conversational commerce. Our mission is to transform the traditional e-commerce experience into an intuitive, personalized journey powered by state of the art large language models (LLMs). Key Responsibilities: - Lead and mentor a team of elite applied scientists developing next-generation AI shopping experiences - Drive architectural decisions and technology strategy for large-scale LLM deployments - Spearhead the development of novel conversational AI features that help customers navigate Amazon's vast product catalog - Partner with product teams to translate business requirements into technical solutions while maintaining high scientific standards - Build and scale production-grade GenAI systems that can handle Amazon's massive customer base - Identify opportunities for innovation and efficiency improvements through emerging AI technologies - Drive cross-functional collaboration with engineering, product, and business teams Impact & Scope: - Direct influence on shopping experiences used by millions of customers globally - Shape the strategic direction of Amazon's conversational commerce initiatives - Lead breakthrough innovations in the application of GenAI to e-commerce - Regular engagement with senior leadership on strategic initiatives and results Required Qualifications: - PhD or Masters in Computer Science, Machine Learning, or related field, or equivalent practical experience - 7+ years of experience in machine learning, with significant focus on NLP/LLMs - Proven track record of launching successful customer-facing AI products at scale - Strong technical leadership experience managing and mentoring applied science teams - Excellence in scientific research methodology and experimental design - Deep expertise in modern deep learning frameworks and ML infrastructure - Outstanding communication skills with ability to translate complex technical concepts for various audiences Preferred Qualifications: - Experience with large-scale distributed systems and cloud computing - Publication record in top-tier ML conferences (NeurIPS, ICML, ACL, etc.) - Previous experience with e-commerce or recommendation systems - Track record of successful collaboration with product management teams - Experience with ML deployment and monitoring in production environments About the Team: You'll join a diverse, passionate team of scientists and engineers working at the intersection of e-commerce and cutting-edge AI. We offer an environment that encourages innovation, supports professional growth, and provides opportunities to shape the future of online shopping. This role offers a unique opportunity to lead groundbreaking work in applied AI while directly impacting the shopping experience of millions of Amazon customers worldwide.
  • US, NY, New York
    Job ID: 3106501
    (Updated 5 days ago)
    We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
  • US, WA, Seattle
    Job ID: 3106036
    (Updated 17 days ago)
    Employer: Amazon Web Services, Inc. Position: Applied Scientist III Location: Seattle, WA Multiple Positions Available: Participate in the design, development, evaluation, deployment and updating of data-driven models and analytical solutions for machine learning (ML) and/or natural language (NL) applications. Develop and/or apply statistical modeling techniques (e.g. Bayesian models and deep neural networks), optimization methods, and other ML techniques to different applications in business and engineering. Routinely build and deploy ML models on available data, and run and analyze experiments in a production environment. Identify new opportunities for research in order to meet business goals. Research and implement novel ML and statistical approaches to add value to the business. Mentor junior engineers and scientists. Telecommuting may be permitted. (40 hours / week, 8:00am-5:00pm, Salary Range $178006 - $226100) Amazon.com is an Equal Opportunity – Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation
  • (Updated 2 days ago)
    The AOP (Analytics Operations and Programs) team is responsible for creating core analytics, insight generation and science capabilities for ROW Ops. We develop scalable analytics applications, AI/ML products and research models to optimize operation processes. You will work with Product Managers, Data Engineers, Data Scientists, Research Scientists, Applied Scientists and Business Intelligence Engineers using rigorous quantitative approaches to ensure high quality data/science products for our customers around the world. As a Data Scientist, you will play a crucial role in supporting the team by creating and maintaining the data infrastructure necessary for the advanced analytics and machine learning solutions. Our team solves a broad range of problems that can be scaled across ROW (Rest of the World including countries like India, Australia, Singapore, MENA and LATAM). Here is a glimpse of the problems that this team deals with on a regular basis: • Using live package and truck signals to adjust truck capacities in real-time • HOTW models for Last Mile Channel Allocation • Using LLMs to automate analytical processes and insight generation • Ops research to optimize middle mile truck routes • Working with global partner science teams to affect Reinforcement Learning based pricing models and estimating Shipments Per Route for $MM savings • Deep Learning models to synthesize attributes of addresses • Abuse detection models to reduce network losses Key job responsibilities 1. Analyze data with statistical and ML techniques. 2. Develop analysis/model in scripting languages (e.g. Python, R) and statistical/mathematical software (e.g. SAS, Matlab, etc.). 3. Develop science-based Supply Chain solutions. 4. Analysis/model documentation. 5. Learn and understand state-of-the-art statistical and ML techniques/tools. 6. Learn and understand Amazon Supply Chain operations.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.