Why Alexa won't wake up when she hears her name in Amazon's Super Bowl ad

This Sunday's Super Bowl between the New England Patriots and the Los Angeles Rams is expected to draw more than 100 million viewers, some of whom will have Alexa-enabled devices within range of their TV speakers. When Amazon's new Alexa ad airs, and Forest Whitaker asks his Alexa-enabled electric toothbrush to play his podcast, how will we prevent viewers’ devices from mistakenly waking up?

Related content
In its collaboration with the NFL, AWS contributes cloud computing technology, machine learning services, business intelligence services — and, sometimes, the expertise of its scientists.

With the Super Bowl ad — as with thousands of other media mentions of Alexa tracked by our team — we teach Alexa what individual recorded instances of her name sound like, so she will know to ignore them. We can also apply this technique, known as acoustic fingerprinting, on the fly to recognize when multiple devices from different households are hearing the same command at around the same time. This is crucial to preventing Alexa from responding to pranks on TV, references to people named Alexa, or other instances of her name in broadcast media that we don't know about in advance.

Related content
Audio watermarking is the process of adding a distinctive sound pattern — undetectable to the human ear — to an audio signal to make it identifiable to a computer. It’s one of the ways that video sites recognize copyrighted recordings that have been posted illegally. To identify a watermark, a computer usually converts a digital file into an audio signal, which it processes internally.

Our approach to matching audio recordings is based on classic acoustic-fingerprinting algorithms like that of Haitsma and Kalker in their 2002 paper “A Highly Robust Audio Fingerprinting System”. Such algorithms are designed to be robust to audio distortion and interference, such as those introduced by TV speakers, the home environment, and our microphones.

To produce an acoustic fingerprint, we first derive a grid of log filter-bank energies (LFBEs) for the acoustic signal, which represent the amounts of energy in multiple overlapping frequency bands in a series of overlapping time windows. The algorithm steps through the grid in two-by-two blocks and adds and subtracts the measurements in the grid cells in a standardized way. (Technically, it computes the 2-D gradient of each block.) The sign of the result — positive or negative — provides a one-bit summary of the values in the block. The summaries of all the blocks in the grid constitute the acoustic fingerprint, and two fingerprints are deemed to match if the fraction of bits that are different (the “bit error rate”) is small enough.

Acoustic-fingerprinting_figure.jpg._CB455311870_.jpg
An illustration of how fingerprints are used to match audio. Different instances of Alexa’s name result in a bit error rate of about 50% (random bit differences). A bit error rate significantly lower than 50% indicates two recordings of the same instance of Alexa’s name.

When we have audio samples in advance — as we do with the Super Bowl ad — we fingerprint the entire sample and store the result. With audio that’s streaming to the cloud from Alexa-enabled devices, we build up fingerprints piecemeal, repeatedly comparing them to other fingerprints as they grow.

If a match is found, the incoming request is ignored. Noisy audio may yield a match, but it requires the accumulation of more data (a larger fingerprint) than clean audio does.

Using this matching algorithm, we have built a system with multiple layers to protect customers at multiple stages:

  • On-device: On most Echo devices, every time the wake word “Alexa” is detected, the audio is checked against a small set of known instances where Alexa is mentioned in commercials. Due to the limits of device CPU, this set is generally restricted to commercials we expect to be currently airing on TV.
  • In the cloud: Every audio request to Alexa that starts with a wake word is checked in two ways:
    • Known media: the audio is checked against a large set of fingerprints for known instances of “Alexa” and other wake words in commercials and other media. These fingerprints can also make use of the audio that follows the wake word.
    • Unknown media: the audio is checked against a fraction of other Alexa requests arriving at around the same time. If the audio of a request matches that of requests from at least two other customers, we identify it as a media event. We also check incoming audio against a small cache of fingerprints discovered on the fly (the cached fingerprints are averages of the fingerprints that were declared matches). The cache allows Alexa to continue to ignore spurious wake words even when they no longer occur simultaneously.

Ideally, a device will identify media audio using locally stored fingerprints, so it does not wake up at all. If it does wake up, and we match the media event in the cloud, the device will quickly and quietly turn back off.

In addition to tracking new media mentions of Alexa’s name and updating our library of fingerprints accordingly, our team works continuously to improve the accuracy and efficiency of the fingerprinting system. We’re also exploring complementary technologies, such as machine learning systems that can distinguish media audio more generally from live human speech.

Acknowledgments: Joe Wang, Aaron Challenner, Mike Peterson, Michael Rudeen, Naresh Narayanan, Liangwei Guo, and the rest of the team

Related content

CA, BC, Vancouver
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Amazon ML Solutions Lab team helps AWS customers accelerate the use of machine learning to solve business and operational challenges and promote innovation in their organization. We are looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help develop solutions by pushing the envelope in Time Series, Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), Machine Learning (ML) and Computer Vision (CV).Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. As a ML Solutions Lab Applied Scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data and develop novel models to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. You will apply classical ML algorithms and cutting-edge deep learning (DL) approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, and event detection among others. The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML/DL models to solve diverse challenges and opportunities across industriesInteract with customer directly to understand their business problems, and help them with defining and implementing scalable ML/DL solutions to solve themWork closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new algorithmsThis position requires travel of up to 20%.
US, WA, Seattle
Are you a Ph.D. interested in the fields of machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? Do you enjoy diving deep into hard technical problems and coming up with solutions that enable successful products that improve the lives of people in a meaningful way? If this describes you, come join our science teams at Amazon. As an Applied Scientist, you will have access to large datasets with billions of images and video to build large-scale systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000