Audio watermarking algorithm is first to solve "second-screen problem" in real time

Audio watermarking is the process of adding a distinctive sound pattern — undetectable to the human ear — to an audio signal to make it identifiable to a computer. It’s one of the ways that video sites recognize copyrighted recordings that have been posted illegally.

To identify a watermark, a computer usually converts a digital file into an audio signal, which it processes internally. If the watermark were embedded in the digital file, rather than in the signal itself, then re-encoding the audio in a different file format would eliminate the watermark.

Watermarking schemes designed for on-device processing tend to break down, however, when a signal is broadcast over a loudspeaker, captured by a microphone, and only then inspected for watermarks. In what is referred to as the second-screen problem, noise and interference distort the watermark, and delays from acoustic transmission make it difficult to synchronize the detector with the signal.

At this year’s International Conference on Acoustics, Speech, and Signal Processing, in May, Amazon senior research scientist Mohamed Mansour and I will present a new audio-watermarking algorithm that effectively solves the second-screen problem in real time for the first time in the watermarking literature.

In our experiments, if the watermark was added to about two seconds of the audio signal, our algorithm could detect it with almost perfect accuracy, even when the distance between the speaker and the microphone was greater than 20 feet.

Audio_watermark.gif._CB468320145_.gif
Audio watermarks (red squiggles) are embedded imperceptibly in a media signal (black). Each watermark consists of a repeating sequence of audio building blocks (colored shapes). A detector segments the watermark and aligns the segments to see if they match. Randomly inverting the building blocks prevents rhythmic patterns in the media signal from triggering the detector; the detector uses a binary key to restore the inverted blocks.
Animation by Nick Little

Our algorithm could complement the acoustic-fingerprinting technology that currently prevents Alexa from erroneously waking when she hears media mentions of her name. Acoustic fingerprinting requires storing a separate fingerprint for each instance of Alexa’s name, and its computational complexity is proportional to the fingerprint database size. The watermarking algorithm, by contrast, has constant computational complexity, which gives it advantages for use in low-power computational devices, such as Bluetooth headsets.

We also envision that audio watermarking could improve the performance of Alexa’s automatic-speech-recognition system. Audio content that Alexa plays — music, audiobooks, podcasts, radio broadcasts, movies — could be watermarked on the fly, so that Alexa-enabled devices can better gauge room reverberation and filter out echoes.

Our system, like most modern audio-watermarking systems, uses the spread-spectrum concept. That means that the watermark energy is spread across time and/or frequency, which renders the watermark inaudible to human listeners. Further, this energy spread makes the watermark robust to common audio processing procedures, such as mp3 compression.

Also like other systems, ours builds watermarks from noise blocks of fixed duration. Each noise block introduces its own, distinct perturbation pattern to selected frequency components in the host audio signal. The watermark consists of noise blocks strung together in a predetermined sequence, and it looks like background noise to someone who lacks the decoding key.

In conventional watermarking, the key is simply the sequence of the noise blocks, and the detector looks for that sequence in the audio signal. In the second-screen scenario, however, electrical noise in the speaker and microphone and interference from echoes and ambient noise during acoustic transmission distort the watermark, making detection more challenging.

Even then, careful synchronization between the received signal and a reference copy of the noise pattern might still enable watermark detection, but acoustic transmission introduces delays that can’t be precisely gauged, rendering synchronization difficult.

We solve both problems by dispensing with the reference copy of the noise pattern. Instead, we embed the same, relatively short noise pattern in the audio signal multiple times. Rather than compare the received signal to a reference pattern, we compare it to itself.

Audio with watermarkAudio without watermark

Two versions of a clip from an Alexa ad, one with a watermark embedded in the word "Alexa" and one without.

Because the whole audio signal passes through the same acoustic environment, the separate instances of the noise pattern will be distorted in similar ways. That means that we can compare them directly, without having to do any complex echo cancellation or noise reduction. The detector takes advantage of the distortion due to the acoustic channel, rather than combatting it.

This approach — known as autocorrelation — poses its own problems, however. One is that longer watermarks yield higher detection accuracy, and we have to use shorter noise patterns, as we repeat them multiple times.

The other problem is that the audio that we’d like to watermark — whether media mentions of Alexa’s name or Alexa’s own audio output — will frequently include music, and the regular rhythms of an instrumental ensemble can look a lot like a repeating noise pattern.

Again, a single modification solves both problems. With each repetition of the noise block pattern, we randomly invert some of the blocks: where the amplitude of the block would ordinarily increase, we instead decrease it at the same rate, and vice versa.

Now, the key becomes a sequence of binary values, each indicating whether a given noise block is inverted or not. This sequence can be arbitrarily long, even though it’s built on top of a repeated pattern of noise blocks. Because it’s a binary sequence, it’s also efficient to compute with, whereas in conventional watermarking, the key is a sequence of floating-point values, each describing the shape of a noise block.

The random inversion of the noise blocks also ensures that the watermark detector won’t be fooled by a drum kit holding a steady tempo. It does require that, when we sequence the watermark to compare noise block patterns, we re-invert the blocks that were flipped. But this can be done efficiently using the binary key.

The experimental results reported in the paper show that for the general second-screen problem, the algorithm provided an excellent trade-off between detection accuracy — what percentage of watermarks we detect — and false-alarm rate — how often the algorithm infers a watermark that isn’t there. Further, the decoder has low complexity, which enables embedded implementation, and low latency, which enables real-time implementation. Applying the algorithm to the particular problem of detecting media mentions of Alexa poses additional technical challenges that the Alexa team is currently tackling.

Acknowledgments: Mohamed Mansour, Mike Rodehorst, Joe Wang, Sumit Garg, Parind Shah, Shiv Vitaladevuni

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
IL, Haifa
Job summaryThe Team: Amazon One is a fast, convenient, contactless way for people to use their palm to make everyday activities like paying at a store, presenting a loyalty card, entering a location like a stadium, or badging into work more effortless. The service is designed to be highly secure and uses custom-built algorithms and hardware to create a person’s unique palm signature. Designed and custom-built by Amazonians, it uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design.The Role: Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems.If you have expertise leading Computer Vision research teams and have a Ph.D, or an MS with 2+ years of industry experience and have:the ability to recognize and champion new ideas and novel solutions;the insight to correctly identify paths worth exploring;the discipline to fast-fail when data refutes theory;and the fortitude to continue exploring until your solution is foundcome join us invent the future and change the world.
US, VA, Arlington
Job summaryAre you customer-obsessed, data oriented, and confident in proposing opportunities to improve our consumers’ experience across different Amazon businesses? Amazon is looking for an experienced, talented and highly motivated individual to join our Customer Loyalty Strategy team.We are seeking a Research scientist who will primarily support development of customer experience research studies across a variety of Amazon businesses. You will join an expanding team which measures Amazon’s end-to-end customer experience and will design research studies find and track customer issues, and eventually to achieve our vision: Earth's Most Customer-Centric Company.Leveraging your analytical skill set and research background, you will drive studies across multiple geographies, partnering with senior business leaders in developing studies and conducting customer research. The role will allow you to make a real impact for our customers from Day 1 and provide a dynamic, innovative and fast-paced environment to constantly build your skill set and address new challenges.Key job responsibilitiesResponsibilities include:· Customer Research and Analytics: Design, execute, and manage customer research to measure customer loyalty and Net Promoter Score (NPS) and identify opportunities to improve CX.· Product Management: Lead large and complex studies, including: scope alignment with local and international business leaders, design, data collection, data analysis, recommendations and presenting results to senior management worldwide. Research & Development: Enable best in class research by constantly updating the research methodology through experimentation (A/B Testing) and adding analytical capabilities. Research Consulting: Enable business teams at Amazon to discover ways in which they can implement research methodologies to drive strategic and incremental improvements in customer experience. About the teamCustomer Loyalty Benchmarking (CLB) is a global product, technology, and marketing research team whose charter is to provide quantitative and qualitative customer sentiment and loyalty insight, at scale, for Amazon internal businesses and service teams. Our vision is to empower our global partners to grow customer loyalty through actionable customer insights.
US, CA, Santa Clara
Job summaryAmazon is looking for a passionate Senior Applied Scientist with a strong machine learning background to help build language technology and apply to a new domain. Our team pushes the envelope in Natural Language Processing (NLP), and Machine Learning (ML). Your work will impact millions of our customers in the form of ML-based products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The ideal candidate has deep expertise in one or several of the following fields: Natural Language Processing, Conversational AI, Applied/Theoretical Machine Learning, Information Retrieval, Artificial Intelligence. Our team’s mission is focused on making Amazon the most trusted and customer-centric company on earth for consumers, advertisers, developers, creators, and selling partners (and growing). We are a cross-functional team of builders with a vision to disrupt proactive risk identification and empower business customers to use data to make fast, risk-informed decisions, and scale expert knowledge (e.g., economics, web3 technologies, cybersecurity, architecture design).Key job responsibilities• Invent or adapt new scientific approaches, models or algorithms driven by customers’ needs, including taking on challenging problems, elicit requirements, and deliver innovative solutions into production with large customer impact.• Work with cross-functional science, engineering and product teams, and influence our science and business strategy by making insightful contributions to team roadmaps, goals, priorities, and approach.• Research, design and implement scalable computer vision models to solve problems that matter to our customers in an iterative fashion.• Mentor and teach other less experienced scientists, and serve in the internal and/or external science community by reviewing peers’ research.• Stay informed on the latest computer vision, machine learning, deep learning and/or artificial intelligence trends and make presentations to the larger engineering and applied science communities.A day in the lifeThis is a new role for a start-up team with an enormous opportunity to create impact to millions of Amazon customers globally. As a Senior Applied Scientist, you will provide Computer Vision expertise that helps accelerate the business and create impact for our customers. You will research, experiment, build, collaborate, and deliver various models that help us innovate different ways to enhance customer experience. You will need to be entrepreneurial, wear many hats, and work in a highly collaborative environment. We like to move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.About the teamCustomer Experience and Business Trends is an organization made up of a diverse suite of functions dedicated to deeply understanding and improving customer experience, globally. We are a team of builders that develop products, services, ideas, and various ways of leveraging data to influence product and service offerings – for almost every business at Amazon – for every customer (e.g., consumers, developers, sellers/brands, employees, investors, streamers, gamers). Our team also puts a high value on work-life balance. We offer a flexible schedule so you can have a well-balanced life — both in and outside of work.
US, CA, Santa Clara
Job summaryWe're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect customers data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.Key job responsibilitiesDeeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community.Engage with our customers to develop understanding of their needs.Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving.Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare.Author papers and present your work internally and externally.Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning.About the teamOur small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services.Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale.We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even image yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun.The Amazon Robotics (AR) Virtual Systems Profiling team builds models, runs simulation experiments and delivers analyses that are central to understanding performance of the entire AR system, e.g. operational and software scaling characteristics, bottlenecks, robustness to “chaos monkey” stresses -- we inform critical engineering and business decisions about Amazon’s approach to robotic fulfillment.We seek a talented and motivated engineer to tackle broad challenges in system-level analysis. You will work in a small team to quantify system performance at scale and to expand the breadth and depth of our analysis (e.g. increase the range of software components and warehouse processes covered by our models, develop our library of key performance indicators, construct experiments that efficiently root cause emergent behaviors). You will engage with growing teams of software development and warehouse design engineers to drive evolution of the AR system and of the simulation engine that supports our work.