RecSys 2022: “Recommenders are ubiquitous”

Adapting natural-language-processing techniques to recommendation systems and algorithmic fairness are two central topics at this year’s conference.

The ACM Conference on Recommender Systems (RecSys), the leading conference in the field of recommendation systems, takes place this week, and two Amazon scientists — Max Harper, a senior applied scientist, and Vanessa Murdock, a senior applied-science manager, both in the Alexa Shopping organization — are among the conference’s three general chairs, along with Jennifer Golbeck of the University of Maryland. Harper and Murdock spoke to Amazon Science about the conference program and what it indicates about the state of research on recommender systems.

Amazon Science: Can you tell us a little bit about RecSys?

Max Harper: RecSys has been around for a long time — since the ’90s — and it's a community that's interested in both algorithms and applications of machine learning techniques that model the behavior of users. In particular, RecSys focuses on domains where the definition of the best thing for the model to return depends on which person you ask. So it's personalized.

RecSys portrait.png
Senior applied scientist Max Harper (left) and senior applied-science manager Vanessa Murdock, both of the Alexa Shopping organization, are two of the three general chairs at this year's RecSys.

The classical applications include movies, music, and books, which are obviously taste-driven domains. But these days, it's expanded into tons of areas, including travel, fashion, and job finding.

In addition to algorithms and applications, I'd say about 20% of the field is interested in people, how people perceive recommendations, how to design user interfaces that work well and how to shape the user experience in a variety of ways.

There's also a whole host of machine learning issues that comes along with it, including how to measure performance, how to scale the algorithms, how to preserve users’ privacy. And finally, an increasingly important issue is the societal impacts of these algorithms.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Vanessa Murdock: I sit between the fields of search and recommendation, and they're somewhat different in that recommendations can be made even if the user isn't asking for them, whereas search is usually in response to a request.

Recommenders are ubiquitous — they’re in many of the apps and tools we use every day. For example, if you're looking for a coffee in Seattle, and you look at a map, the resolution of the map that you see on the first view will show you some points of interest, and then, if you zoom in, you'll see more. You can view those first points of interest as recommendations, but it's not what you usually think of as a recommender.

Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.
Vanessa Murdock

All of this research on deciding what people would like to engage with has had significant influence on online commerce and ads and sponsored placements. Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.

AS: In 2017, when IEEE Internet Computing celebrated its 20th anniversary, it gave its test-of-time award to Amazon’s 2003 paper on item-to-item collaborative filtering. How has the field evolved since that paper?

MH: The concept of collaborative filtering is still very, very relevant. These days, matrix factorization techniques are much more common; you use them to complete an item-customer matrix. But it's essentially the same class of techniques.

There's a paper at this year's RecSys, “Revisiting the performance of iALS on item recommendation benchmarks”, and it's part of the RecSys replicability track, which is kind of a unique thing at RecSys. This paper has to do with matrix factorization, which the field thinks of as an old-fashioned technique. And the point that authors make in this paper is that a well-tuned matrix factorization algorithm can hold its own against a whole range of more modern deep-learning algorithms.

Related content
Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

VM: The reproducibility track at RecSys is especially good because a lot of reported research is incremental gains over many years. In every paper, the numbers always go up, and the results are always significant, but the improvements don’t always add up over time. Having a reproducibility track really sets RecSys apart. It means that as we are making gains in some area, we can look back and say, “Is this really true?”

In my own work, I've found that when I've tried to reproduce work from other people, the results depend on the collection or the queries or the system parameters. And that's not what a scientific advance really should be. So I think that that's a very important track, and more conferences should add it.

Sequential recommendation

AS: What are some of the newer ideas in the field that you find most intriguing?

MH: If I were to pick the number one thing that seems to have taken over the conference, it would be the application of techniques from natural-language processing to the field of recommender systems. In particular, Transformers and large language models like BERT have been adapted to the context of recommendations in an interesting way.

Related content
Two-day RecSys workshop that extends the popular REVEAL to include CONSEQUENCES features Amazon organizers, speakers.

Essentially, these language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items — for example, products at Amazon or movies at Netflix that users engage with. And by using similar training techniques to what they use in NLP, they can solve problems like next-item prediction: given that the user has looked at these three products most recently, what's the product that they're most likely to look at next?

Language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items.
Max Harper

That concept is called sequential recommendation, and it is everywhere at RecSys this year.

AS: Does sequential recommendation use the same kind of masked training that language models do?

MH: Yeah, it does. You take a sequence of user behavior, and you hide one of the items that they actually interacted with and try to predict that that's part of the sequence.

AS: How is that approach adapted to the new setting?

MH: Two examples I can think of: One is that there's aren’t necessarily natural boundaries in a sequence of user interactions, so you might be tempted to look at the entire sequence of interactions in order to predict the next one. Researchers are looking at the degree to which recency is important in next-item recommendation.

Another one is that sentences are more predictable: if you're missing a word in a sentence, it's more likely that a human could guess what that word is. With a sequence of item clicks or ratings or purchases, there might be a lot of noise with certain items.

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

Yusan Lin, who joined Amazon Fashion this year as an applied scientist, is a coauthor on a RecSys paper called “Denoising self-attentive sequential recommendation”, and it's about that concept: how do you find those items that are potentially harmful to the performance of the system and essentially hide them from the training so that the system learns more of a clean language, if you will, of what people are interested in?

VM: Sometimes the sequence of interactions is way too predictable. In e-commerce, if you think about reordering, where, say, you order the same brand of coffee absolutely every week, there's not really a benefit to recommending that coffee to you, even though it's very accurate. So there's some subtlety in there when we're talking about predicting the next recommendation — the next good recommendation — from a sequence of user interactions.

Fairness

AS: Vanessa, are there any other recent research trends that you find particularly interesting?

VM: In the last, say, 10 years, the attention that researchers have been paying to bias and fairness is tremendously important. As we get better at predicting what people need, and as we become more embedded in everyday life, the effort to make sure that we're not introducing unintended biases is very, very important. It's a hard problem, and I'm very happy to see attention to that.

AS: What kind of approaches do people take to that problem?

VM: The first thing is that the researcher actually has to be aware of the problem. A lot of times the data is very large, and the items you are trying to predict are a very small subset. Suppose that you have a group of people who have blue hair, and they're very interested in products for blue hair. You can imagine they are a tiny, tiny proportion of your data. If your recommender is based on what most people like, you're never going to offer them anything for their blue hair.

It's a class of problems called unknown unknowns, where there’s a small positive class, but you don't know how big it is, and you don't have a way to find that in your data. You know there are some people with blue hair because they've interacted with blue-hair things, but you don't know how many of your customers actually have blue hair.

Related content
Research investigates how to construct recommendation algorithms when the search space is massive and how to perform natural-language searches on the COVID-19 literature.

Some approaches for that are to sample in a clever way or to create synthetic data or to do domain adaptation, where you have a large amount of known data from some other domain that you can adapt to this new area. For instance, you have a lot of data about people who have green hair, and you can adapt that to people with blue hair.

Another is to look at whether the data itself has a skew in the features. Maybe the features are accidentally correlated, or maybe something is not represented well, because the feature space for the blue haired items is too small. Those are all things to look at.

MH: I totally agree that fairness, along with privacy and explainability, are big topics at this year's RecSys. There definitely is research into news recommendation, which is a big, important topic to the world. There's this idea of filter bubbles, which is a long-hypothesized problem, but one that we're seeing in practice, in which personalization technology makes the range of opinions that we see online shallower and shallower. So for instance, we'll see news that confirms our own beliefs rather than seeing a diversity of viewpoints.

There's some work on those topics at this year's RecSys. One paper in particular I thought was quite interesting because they took a principled approach to looking at what it means for a news article to be diverse. There's a shallow, algorithmic definition of diversity that most prior research has used that may or may not line up with what humans perceive as diversity in news articles.

So they took this more principled approach to measuring diversity using natural-language techniques. They provided a mathematical foundation for measuring the diversity of a set of articles and looked at how different algorithms actually behave on a news dataset. I think that work on fairness is really important and will be very influential in years to come.

Related content

US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
RO, Iasi
Amazon’s mission is to be earth’s most customer-centric company and our team is the guardian of our customer’s privacy. Amazon SDO Privacy engineering operates in Austin – TX, US and Iasi, Bucharest – Romania. Our mission is to develop services which will enable every Amazon service operating with personal data to satisfy the privacy rights of Amazon customers. We are working backwards from the customers and world-wide privacy regulations, think long term, and propose solutions which will assure Amazon Privacy compliance. Our external customers are world-wide customers of Amazon Retail Website, Amazon B2B services (e.g. Seller central, App / Skill Developers), and Amazon Subsidiaries. Our internal customers are services within Amazon who operate with personal data, Legal Representatives, and Customer Service Agents. You can opt-in for being part of one of the existing or newly formed engineering teams who will contribute to Amazon mission to meet external customers’ privacy rights: Personal Data Classification, The Right to be forgotten, The right of access, or Digital Markets Act – The Right of Portability. The ideal candidate has a great passion for data and an insatiable desire to learn and innovate. A commitment to team work, hustle and strong communication skills (to both business and technical partners) are absolute requirements. Creating reliable, scalable, and high-performance products requires a sound understanding of the fundamentals of Computer Science and practical experience building large-scale distributed systems. Your solutions will apply to all of Amazon’s consumer and digital businesses including but not limited to Amazon.com, Alexa, Kindle, Amazon Go, Prime Video and more. Key job responsibilities As an data scientist on our team, you will apply the appropriate technologies and best practices to autonomously solve difficult problems. You'll contribute to the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. You will collaborate with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. Your work will directly impact the trust customers place in Amazon Privacy, globally.
JP, 13, Tokyo
The JP Economics team is a central science team working across a variety of topics in the JP Retail business and beyond. We work closely with JP business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel economic/econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with JP- EU- and US-based interdisciplinary teams. In this role, you will build ground-breaking, state-of-the-art causal inference models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, econometrics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. Contribute to building a strong data science community in Amazon Asia.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.