RecSys 2022: “Recommenders are ubiquitous”

Adapting natural-language-processing techniques to recommendation systems and algorithmic fairness are two central topics at this year’s conference.

The ACM Conference on Recommender Systems (RecSys), the leading conference in the field of recommendation systems, takes place this week, and two Amazon scientists — Max Harper, a senior applied scientist, and Vanessa Murdock, a senior applied-science manager, both in the Alexa Shopping organization — are among the conference’s three general chairs, along with Jennifer Golbeck of the University of Maryland. Harper and Murdock spoke to Amazon Science about the conference program and what it indicates about the state of research on recommender systems.

Amazon Science: Can you tell us a little bit about RecSys?

Max Harper: RecSys has been around for a long time — since the ’90s — and it's a community that's interested in both algorithms and applications of machine learning techniques that model the behavior of users. In particular, RecSys focuses on domains where the definition of the best thing for the model to return depends on which person you ask. So it's personalized.

RecSys portrait.png
Senior applied scientist Max Harper (left) and senior applied-science manager Vanessa Murdock, both of the Alexa Shopping organization, are two of the three general chairs at this year's RecSys.

The classical applications include movies, music, and books, which are obviously taste-driven domains. But these days, it's expanded into tons of areas, including travel, fashion, and job finding.

In addition to algorithms and applications, I'd say about 20% of the field is interested in people, how people perceive recommendations, how to design user interfaces that work well and how to shape the user experience in a variety of ways.

There's also a whole host of machine learning issues that comes along with it, including how to measure performance, how to scale the algorithms, how to preserve users’ privacy. And finally, an increasingly important issue is the societal impacts of these algorithms.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Vanessa Murdock: I sit between the fields of search and recommendation, and they're somewhat different in that recommendations can be made even if the user isn't asking for them, whereas search is usually in response to a request.

Recommenders are ubiquitous — they’re in many of the apps and tools we use every day. For example, if you're looking for a coffee in Seattle, and you look at a map, the resolution of the map that you see on the first view will show you some points of interest, and then, if you zoom in, you'll see more. You can view those first points of interest as recommendations, but it's not what you usually think of as a recommender.

Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.
Vanessa Murdock

All of this research on deciding what people would like to engage with has had significant influence on online commerce and ads and sponsored placements. Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.

AS: In 2017, when IEEE Internet Computing celebrated its 20th anniversary, it gave its test-of-time award to Amazon’s 2003 paper on item-to-item collaborative filtering. How has the field evolved since that paper?

MH: The concept of collaborative filtering is still very, very relevant. These days, matrix factorization techniques are much more common; you use them to complete an item-customer matrix. But it's essentially the same class of techniques.

There's a paper at this year's RecSys, “Revisiting the performance of iALS on item recommendation benchmarks”, and it's part of the RecSys replicability track, which is kind of a unique thing at RecSys. This paper has to do with matrix factorization, which the field thinks of as an old-fashioned technique. And the point that authors make in this paper is that a well-tuned matrix factorization algorithm can hold its own against a whole range of more modern deep-learning algorithms.

Related content
Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

VM: The reproducibility track at RecSys is especially good because a lot of reported research is incremental gains over many years. In every paper, the numbers always go up, and the results are always significant, but the improvements don’t always add up over time. Having a reproducibility track really sets RecSys apart. It means that as we are making gains in some area, we can look back and say, “Is this really true?”

In my own work, I've found that when I've tried to reproduce work from other people, the results depend on the collection or the queries or the system parameters. And that's not what a scientific advance really should be. So I think that that's a very important track, and more conferences should add it.

Sequential recommendation

AS: What are some of the newer ideas in the field that you find most intriguing?

MH: If I were to pick the number one thing that seems to have taken over the conference, it would be the application of techniques from natural-language processing to the field of recommender systems. In particular, Transformers and large language models like BERT have been adapted to the context of recommendations in an interesting way.

Related content
Two-day RecSys workshop that extends the popular REVEAL to include CONSEQUENCES features Amazon organizers, speakers.

Essentially, these language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items — for example, products at Amazon or movies at Netflix that users engage with. And by using similar training techniques to what they use in NLP, they can solve problems like next-item prediction: given that the user has looked at these three products most recently, what's the product that they're most likely to look at next?

Language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items.
Max Harper

That concept is called sequential recommendation, and it is everywhere at RecSys this year.

AS: Does sequential recommendation use the same kind of masked training that language models do?

MH: Yeah, it does. You take a sequence of user behavior, and you hide one of the items that they actually interacted with and try to predict that that's part of the sequence.

AS: How is that approach adapted to the new setting?

MH: Two examples I can think of: One is that there's aren’t necessarily natural boundaries in a sequence of user interactions, so you might be tempted to look at the entire sequence of interactions in order to predict the next one. Researchers are looking at the degree to which recency is important in next-item recommendation.

Another one is that sentences are more predictable: if you're missing a word in a sentence, it's more likely that a human could guess what that word is. With a sequence of item clicks or ratings or purchases, there might be a lot of noise with certain items.

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

Yusan Lin, who joined Amazon Fashion this year as an applied scientist, is a coauthor on a RecSys paper called “Denoising self-attentive sequential recommendation”, and it's about that concept: how do you find those items that are potentially harmful to the performance of the system and essentially hide them from the training so that the system learns more of a clean language, if you will, of what people are interested in?

VM: Sometimes the sequence of interactions is way too predictable. In e-commerce, if you think about reordering, where, say, you order the same brand of coffee absolutely every week, there's not really a benefit to recommending that coffee to you, even though it's very accurate. So there's some subtlety in there when we're talking about predicting the next recommendation — the next good recommendation — from a sequence of user interactions.

Fairness

AS: Vanessa, are there any other recent research trends that you find particularly interesting?

VM: In the last, say, 10 years, the attention that researchers have been paying to bias and fairness is tremendously important. As we get better at predicting what people need, and as we become more embedded in everyday life, the effort to make sure that we're not introducing unintended biases is very, very important. It's a hard problem, and I'm very happy to see attention to that.

AS: What kind of approaches do people take to that problem?

VM: The first thing is that the researcher actually has to be aware of the problem. A lot of times the data is very large, and the items you are trying to predict are a very small subset. Suppose that you have a group of people who have blue hair, and they're very interested in products for blue hair. You can imagine they are a tiny, tiny proportion of your data. If your recommender is based on what most people like, you're never going to offer them anything for their blue hair.

It's a class of problems called unknown unknowns, where there’s a small positive class, but you don't know how big it is, and you don't have a way to find that in your data. You know there are some people with blue hair because they've interacted with blue-hair things, but you don't know how many of your customers actually have blue hair.

Related content
Research investigates how to construct recommendation algorithms when the search space is massive and how to perform natural-language searches on the COVID-19 literature.

Some approaches for that are to sample in a clever way or to create synthetic data or to do domain adaptation, where you have a large amount of known data from some other domain that you can adapt to this new area. For instance, you have a lot of data about people who have green hair, and you can adapt that to people with blue hair.

Another is to look at whether the data itself has a skew in the features. Maybe the features are accidentally correlated, or maybe something is not represented well, because the feature space for the blue haired items is too small. Those are all things to look at.

MH: I totally agree that fairness, along with privacy and explainability, are big topics at this year's RecSys. There definitely is research into news recommendation, which is a big, important topic to the world. There's this idea of filter bubbles, which is a long-hypothesized problem, but one that we're seeing in practice, in which personalization technology makes the range of opinions that we see online shallower and shallower. So for instance, we'll see news that confirms our own beliefs rather than seeing a diversity of viewpoints.

There's some work on those topics at this year's RecSys. One paper in particular I thought was quite interesting because they took a principled approach to looking at what it means for a news article to be diverse. There's a shallow, algorithmic definition of diversity that most prior research has used that may or may not line up with what humans perceive as diversity in news articles.

So they took this more principled approach to measuring diversity using natural-language techniques. They provided a mathematical foundation for measuring the diversity of a set of articles and looked at how different algorithms actually behave on a news dataset. I think that work on fairness is really important and will be very influential in years to come.

Related content

US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
GB, London
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply cutting edge Generative AI algorithms to solve real world problems with significant impact? The AWS Industries Team at AWS helps AWS customers implement Generative AI solutions and realize transformational business opportunities for AWS customers in the most strategic industry verticals. This is a team of data scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and build applications to launch these solutions at scale. The AWS Industries team provides guidance and implements best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. In this Data Scientist role you will be capable of using GenAI and other techniques to design, evangelize, and implement and scale cutting-edge solutions for never-before-solved problems. Key job responsibilities - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms and build ML systems to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.
US, CA, Palo Alto
Amazon Sponsored Products is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of GenAI/LLM powered self-service performance advertising products that drive discovery and sales. Our products are strategically important to Amazon’s Selling Partners and key to driving their long-term growth. We deliver billions of ad impressions and clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving team with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. This role will be pivotal within the Autonomous Campaigns org of Sponsored Products Ads, where we're pioneering the development of AI-powered advertising innovations that will redefine the future of campaign management and optimization. As a Principal Applied Scientist, you will lead the charge in creating the next generation of self-operating, GenAI-driven advertising systems that will set a new standard for the industry. Our team is at the forefront of designing and implementing these transformative technologies, which will leverage advanced Large Language Models (LLMs) and sophisticated chain-of-thought reasoning to achieve true advertising autonomy. Your work will bring to life systems capable of deeply understanding the nuanced context of each product, market trends, and consumer behavior, making intelligent, real-time decisions that surpass human capabilities. By harnessing the power of these future-state GenAI systems, we will develop advertising solutions capable of autonomously selecting optimal keywords, dynamically adjusting bids based on complex market conditions, and optimizing product targeting across various Amazon platforms. Crucially, these systems will continuously analyze performance metrics and implement strategic pivots, all without requiring manual intervention from advertisers, allowing them to focus on their core business while our AI works tirelessly on their behalf. This is not simply about automating existing processes; your work will redefine what's possible in advertising. Our GenAI systems will employ multi-step reasoning, considering a vast array of factors, from seasonality and competitive landscape to macroeconomic trends, to make decisions that far exceed human speed and effectiveness. This autonomous, context-aware approach represents a paradigm shift in how advertising campaigns are conceived, executed, and optimized. As a Principal Applied Scientist, you will be at the forefront of this transformation, tackling complex challenges in natural language processing, reinforcement learning, and causal inference. Your pioneering efforts will directly shape the future of e-commerce advertising, with the potential to influence marketplace dynamics on a global scale. This is an unparalleled opportunity to push the boundaries of what's achievable in AI-driven advertising and leave an indelible mark on the industry. Key job responsibilities • Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business using GenAI, LLM, and ML solutions. • Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in AI/ML. • Design and lead organization-wide AI/ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our advertisers. • Work with our engineering partners and draw upon your experience to meet latency and other system constraints. • Identify untapped, high-risk technical and scientific directions, and devise new research directions that you will drive to completion and deliver. • Be responsible for communicating our Generative AI/ Traditional AI/ML innovations to the broader internal & external scientific community.
US, CO, Boulder
Do you want to lead the Ads industry and redefine how we measure the effectiveness of the WW Amazon Ads business? Are you passionate about causal inference, Deep Learning/DNN, raising the science bar, and connecting leading-edge science research to Amazon-scale implementation? If so, come join Amazon Ads to be an Applied Science leader within our Advertising Incrementality Measurement science team! Key job responsibilities As an Applied Science leader within the Advertising Incrementality Measurement (AIM) science team, you are responsible for defining and executing on key workstreams within our overall causal measurement science vision. In particular, you will lead the science development of our Deep Neural Net (DNN) ML model, a foundational ML model to understand the impact of individual ad touchpoints for billions of daily ad touchpoints. You will work on a team of Applied Scientists, Economists, and Data Scientists to work backwards from customer needs and translate product ideas into concrete science deliverables. You will be a thought leader for inventing scalable causal measurement solutions that support highly accurate and actionable causal insights--from defining and executing hundreds of thousands of RCTs, to developing an exciting science R&D agenda. You will solve hard problems, advance science at Amazon, and be a leading innovator in the causal measurement of advertising effectiveness. In this role, you will work with a team of applied scientists, economists, engineers, product managers, and UX designers to define and build the future of advertising causal measurement. You will be working with massive data, a dedicated engineering team, and industry-leading partner scientists. Your team’s work will help shape the future of Amazon Advertising.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As a Data Scientist on this team you will: - Lead Data Science solutions from beginning to end. - Deliver with independence on challenging large-scale problems with complexity and ambiguity. - Write code (Python, R, Scala, SQL, etc.) to obtain, manipulate, and analyze data. - Build Machine Learning and statistical models to solve specific business problems. - Retrieve, synthesize, and present critical data in a format that is immediately useful to answering specific questions or improving system performance. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE