RecSys 2022: “Recommenders are ubiquitous”

Adapting natural-language-processing techniques to recommendation systems and algorithmic fairness are two central topics at this year’s conference.

The ACM Conference on Recommender Systems (RecSys), the leading conference in the field of recommendation systems, takes place this week, and two Amazon scientists — Max Harper, a senior applied scientist, and Vanessa Murdock, a senior applied-science manager, both in the Alexa Shopping organization — are among the conference’s three general chairs, along with Jennifer Golbeck of the University of Maryland. Harper and Murdock spoke to Amazon Science about the conference program and what it indicates about the state of research on recommender systems.

Amazon Science: Can you tell us a little bit about RecSys?

Max Harper: RecSys has been around for a long time — since the ’90s — and it's a community that's interested in both algorithms and applications of machine learning techniques that model the behavior of users. In particular, RecSys focuses on domains where the definition of the best thing for the model to return depends on which person you ask. So it's personalized.

RecSys portrait.png
Senior applied scientist Max Harper (left) and senior applied-science manager Vanessa Murdock, both of the Alexa Shopping organization, are two of the three general chairs at this year's RecSys.

The classical applications include movies, music, and books, which are obviously taste-driven domains. But these days, it's expanded into tons of areas, including travel, fashion, and job finding.

In addition to algorithms and applications, I'd say about 20% of the field is interested in people, how people perceive recommendations, how to design user interfaces that work well and how to shape the user experience in a variety of ways.

There's also a whole host of machine learning issues that comes along with it, including how to measure performance, how to scale the algorithms, how to preserve users’ privacy. And finally, an increasingly important issue is the societal impacts of these algorithms.

Related content
In 2017, when the journal IEEE Internet Computing was celebrating its 20th anniversary, its editorial board decided to identify the single paper from its publication history that had best withstood the “test of time”. The honor went to a 2003 paper called “Amazon.com Recommendations: Item-to-Item Collaborative Filtering”, by then Amazon researchers Greg Linden, Brent Smith, and Jeremy York.

Vanessa Murdock: I sit between the fields of search and recommendation, and they're somewhat different in that recommendations can be made even if the user isn't asking for them, whereas search is usually in response to a request.

Recommenders are ubiquitous — they’re in many of the apps and tools we use every day. For example, if you're looking for a coffee in Seattle, and you look at a map, the resolution of the map that you see on the first view will show you some points of interest, and then, if you zoom in, you'll see more. You can view those first points of interest as recommendations, but it's not what you usually think of as a recommender.

Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.
Vanessa Murdock

All of this research on deciding what people would like to engage with has had significant influence on online commerce and ads and sponsored placements. Your Instagram feed and Tik Tok are all recommendations. Your Twitter feed is a set of recommended tweets. It's central to our experience with the digital world in everything that we do.

AS: In 2017, when IEEE Internet Computing celebrated its 20th anniversary, it gave its test-of-time award to Amazon’s 2003 paper on item-to-item collaborative filtering. How has the field evolved since that paper?

MH: The concept of collaborative filtering is still very, very relevant. These days, matrix factorization techniques are much more common; you use them to complete an item-customer matrix. But it's essentially the same class of techniques.

There's a paper at this year's RecSys, “Revisiting the performance of iALS on item recommendation benchmarks”, and it's part of the RecSys replicability track, which is kind of a unique thing at RecSys. This paper has to do with matrix factorization, which the field thinks of as an old-fashioned technique. And the point that authors make in this paper is that a well-tuned matrix factorization algorithm can hold its own against a whole range of more modern deep-learning algorithms.

Related content
Learn how the Amazon Music Conversations team is using pioneering machine learning to make Alexa's discernment better than ever.

VM: The reproducibility track at RecSys is especially good because a lot of reported research is incremental gains over many years. In every paper, the numbers always go up, and the results are always significant, but the improvements don’t always add up over time. Having a reproducibility track really sets RecSys apart. It means that as we are making gains in some area, we can look back and say, “Is this really true?”

In my own work, I've found that when I've tried to reproduce work from other people, the results depend on the collection or the queries or the system parameters. And that's not what a scientific advance really should be. So I think that that's a very important track, and more conferences should add it.

Sequential recommendation

AS: What are some of the newer ideas in the field that you find most intriguing?

MH: If I were to pick the number one thing that seems to have taken over the conference, it would be the application of techniques from natural-language processing to the field of recommender systems. In particular, Transformers and large language models like BERT have been adapted to the context of recommendations in an interesting way.

Related content
Two-day RecSys workshop that extends the popular REVEAL to include CONSEQUENCES features Amazon organizers, speakers.

Essentially, these language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items — for example, products at Amazon or movies at Netflix that users engage with. And by using similar training techniques to what they use in NLP, they can solve problems like next-item prediction: given that the user has looked at these three products most recently, what's the product that they're most likely to look at next?

Language models learn the semantics of sentences by modeling which words go with which other words, and you can take an analogous approach in the field of recommendations by looking at, not sentences of words, but sequences of items.
Max Harper

That concept is called sequential recommendation, and it is everywhere at RecSys this year.

AS: Does sequential recommendation use the same kind of masked training that language models do?

MH: Yeah, it does. You take a sequence of user behavior, and you hide one of the items that they actually interacted with and try to predict that that's part of the sequence.

AS: How is that approach adapted to the new setting?

MH: Two examples I can think of: One is that there's aren’t necessarily natural boundaries in a sequence of user interactions, so you might be tempted to look at the entire sequence of interactions in order to predict the next one. Researchers are looking at the degree to which recency is important in next-item recommendation.

Another one is that sentences are more predictable: if you're missing a word in a sentence, it's more likely that a human could guess what that word is. With a sequence of item clicks or ratings or purchases, there might be a lot of noise with certain items.

Related content
The scientist's work is driving practical outcomes within an exploding machine learning research field.

Yusan Lin, who joined Amazon Fashion this year as an applied scientist, is a coauthor on a RecSys paper called “Denoising self-attentive sequential recommendation”, and it's about that concept: how do you find those items that are potentially harmful to the performance of the system and essentially hide them from the training so that the system learns more of a clean language, if you will, of what people are interested in?

VM: Sometimes the sequence of interactions is way too predictable. In e-commerce, if you think about reordering, where, say, you order the same brand of coffee absolutely every week, there's not really a benefit to recommending that coffee to you, even though it's very accurate. So there's some subtlety in there when we're talking about predicting the next recommendation — the next good recommendation — from a sequence of user interactions.

Fairness

AS: Vanessa, are there any other recent research trends that you find particularly interesting?

VM: In the last, say, 10 years, the attention that researchers have been paying to bias and fairness is tremendously important. As we get better at predicting what people need, and as we become more embedded in everyday life, the effort to make sure that we're not introducing unintended biases is very, very important. It's a hard problem, and I'm very happy to see attention to that.

AS: What kind of approaches do people take to that problem?

VM: The first thing is that the researcher actually has to be aware of the problem. A lot of times the data is very large, and the items you are trying to predict are a very small subset. Suppose that you have a group of people who have blue hair, and they're very interested in products for blue hair. You can imagine they are a tiny, tiny proportion of your data. If your recommender is based on what most people like, you're never going to offer them anything for their blue hair.

It's a class of problems called unknown unknowns, where there’s a small positive class, but you don't know how big it is, and you don't have a way to find that in your data. You know there are some people with blue hair because they've interacted with blue-hair things, but you don't know how many of your customers actually have blue hair.

Related content
Research investigates how to construct recommendation algorithms when the search space is massive and how to perform natural-language searches on the COVID-19 literature.

Some approaches for that are to sample in a clever way or to create synthetic data or to do domain adaptation, where you have a large amount of known data from some other domain that you can adapt to this new area. For instance, you have a lot of data about people who have green hair, and you can adapt that to people with blue hair.

Another is to look at whether the data itself has a skew in the features. Maybe the features are accidentally correlated, or maybe something is not represented well, because the feature space for the blue haired items is too small. Those are all things to look at.

MH: I totally agree that fairness, along with privacy and explainability, are big topics at this year's RecSys. There definitely is research into news recommendation, which is a big, important topic to the world. There's this idea of filter bubbles, which is a long-hypothesized problem, but one that we're seeing in practice, in which personalization technology makes the range of opinions that we see online shallower and shallower. So for instance, we'll see news that confirms our own beliefs rather than seeing a diversity of viewpoints.

There's some work on those topics at this year's RecSys. One paper in particular I thought was quite interesting because they took a principled approach to looking at what it means for a news article to be diverse. There's a shallow, algorithmic definition of diversity that most prior research has used that may or may not line up with what humans perceive as diversity in news articles.

So they took this more principled approach to measuring diversity using natural-language techniques. They provided a mathematical foundation for measuring the diversity of a set of articles and looked at how different algorithms actually behave on a news dataset. I think that work on fairness is really important and will be very influential in years to come.

Related content

US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.