Amazon Text-to-Speech group's research at ICASSP 2022

Papers focus on speech conversion and data augmentation — and sometimes both at once.

The automatic conversion of text to speech is crucial to Alexa: it’s how Alexa communicates with customers. The models developed by the Amazon Text-to-Speech group are also available to Amazon Web Services (AWS) customers through Polly, the AWS text-to-speech service.

The Text-to-Speech (TTS) group has four papers at this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), all of which deal with either voice conversion (preserving prosodic features while converting one synthetic voice to another), data augmentation, or both.

More ICASSP coverage on Amazon Science

In “Voice Filter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module”, the Amazon TTS group addresses the problem of few-shot speaker adaptation, or learning a new synthetic voice from just a handful of training examples. The paper reformulates the problem as learning a voice conversion model that’s applied to the output of a high-quality TTS model, a conceptual shift from the existing few-shot-TTS paradigm.

In “Cross-speaker style transfer for text-to-speech using data augmentation”, the team shows how to build a TTS model capable of expressive speech, even when the only available training data for the target voice consists of neutral speech. The idea is to first train a voice conversion model, which converts samples of expressive speech in other voices into the target voice, and then use the converted speech as additional training data for the TTS model.

In “Distribution augmentation for low-resource expressive text-to-speech”, the TTS group expands the range of texts used to train a TTS model by recombining excerpts from existing examples to produce new examples. The trick is to maintain the syntactic coherence of the synthetic examples, so that the TTS model won’t waste resources learning improbable sequences of phonemes. (This is the one data augmentation paper that doesn’t rely on voice conversion.)

Parse substitution.png
In this example of data augmentation through recombination of existing training examples, the verb phrase “shook her head”, as identified by a syntactic parse, is substituted for the verb phrase “lied” in the sentence “he never lied”. The original acoustic signals (bottom row) are cut and spliced at the corresponding points. From "Distribution augmentation for low-resource expressive text-to-speech".

Finally, in “Text-free non-parallel many-to-many voice conversion using normalising flows”, the team adapts the concept of normalizing flows, which have been used widely for TTS, to the problem of voice conversion. Like most deep-learning models, normalizing flows learn functions that produce vector representations of input data. The difference is that the functions are invertible, so the inputs can be recovered from the representations. The team hypothesized that preserving more information from the input data would yield better voice conversion, and early experiments bear that hypothesis out.

Voice filter

The idea behind “Voice Filter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module” is that for few-shot learning, it’s easier to take the output of an existing, high-quality TTS model — a voice spectrogram — and adapt that to a new target voice than it is to adapt the model itself.

The key to the approach is that the voice filter, which converts the TTS model’s output to a new voice, is trained on synthetic data created by the TTS model itself.

Voice filter.png
The training procedure for the voice filter.

The TTS model is duration controllable, meaning that the input text is encoded to indicate the duration that each phoneme should have in the output speech. This enables the researchers to create two parallel corpora of training data. One corpus consists of real training examples, from 120 different speakers. The other corpus is synthetic speech generated by the TTS model, but with durations that match those of the multispeaker examples.

The voice filter is trained on the parallel corpora, and then, for few-shot learning, the researchers simply fine-tune it on a new speaker. In experiments, the researchers found that this approach produced speech whose quality was comparable to that produced by conventional models trained on 30 times as much data.

Cross-speaker style transfer

The voice conversion model that the researchers use in “Cross-speaker style transfer for text-to-speech using data augmentation” is based on the CopyCat model previously reported on the Amazon Science blog. The converted expressive data is added to the neutral data to produce the dataset used to train the TTS model

The TTS model takes two inputs: a text sequence and a style vector. During training, the text sequence passes to the TTS model, and the spectrogram of the target speech sample passes to a reference encoder, which produces the style embedding. At inference time, of course, there is no input spectrogram. But the researchers show that they can control the style of the TTS model’s output by feeding it a precomputed style embedding.

Cross-speaker style transfer.png
The voice conversion model (left) and text-to-speech model (right) used for cross-speaker style transfer. The reference encoders are used only during training. From "Cross-speaker style transfer for text-to-speech using data augmentation".

The researchers assessed the model based on human evaluation using the MUSHRA perception scale. Human evaluators reported that, relative to a benchmark model, the new model reduced the gap in perceived style similarity between synthesized and real speech by an average of 58% across 14 different speakers.

Distribution augmentation

Distribution augmentation for low-resource expressive text-to-speech” considers the case in which training data for a new voice is lacking. The goal is to permute the texts of the existing examples, producing new examples, and recombine excerpts from the corresponding speech samples to produce new samples. This does not increase the acoustic diversity of the training targets, but it does increase the linguistic diversity of the training inputs.

To ensure that the synthetic training examples do not become too syntactically incoherent, the researchers construct parse trees for the input texts and then swap syntactically equivalent branches across trees (see figure, above). Swapping the corresponding sections of the acoustic signal requires good alignment between text and signal, which is accomplished by existing forced-alignment models.

During training, to ensure that the resulting TTS model doesn’t become overbiased toward the synthetic examples, the researchers also include a special input token to indicate points at which two existing samples have been fused together. The expectation is that the model will learn to privilege phonemic sequences internal to the real samples over phonemic sequences that cross boundaries between fused samples. At inference time, the value of the token is simply set to 0 across all inputs.

Fused-sample token.png
The “augmentation tag” marks the boundary between acoustic signals taken from two different training examples, to prevent overbiasing the TTS model toward synthetic data. From "Distribution augmentation for low-resource expressive text-to-speech".

The quality of the model’s speech output was assessed by 60 human evaluators, who compared it to speech output by a baseline model, on five different datasets. Across the board, the output of the new model received better scores than the output of the benchmark model.

Normalizing flows

A normalizing flow learns to map input data to a representational space in a way that maximizes the approximation of some prior distribution. The word “flow” indicates that the mapping can be the result of passing the data through a series of invertible transformations, and the enforcement of the distribution imposes the normalization.

In “Text-free non-parallel many-to-many voice conversion using normalising flows”, Amazon TTS researchers consider a flow whose inputs are a source spectrogram, a phoneme embedding, a speaker identity embedding, the fundamental frequency of the acoustic signal, and a flag denoting whether a frame of input audio is voiced or unvoiced. The flow maps the inputs to a distribution of phoneme frequencies in a particular application domain.

Typically, a normalizing flow will learn both the distribution and the mapping from the training data. But here, the researchers pretrain the flow on a standard TTS task, for which training data is plentiful, to learn the distribution in advance.

Because the flow is reversible, a vector in the representational space can be mapped back to a set of source inputs, provided that the other model inputs (phoneme embedding, speaker ID, and so on) are available. To use normalizing flows to perform speech conversion, the researchers simply substitute one speaker for another during this reverse mapping.

Normalizing flow.png
An overview of TTS researchers' use of normalizing flows to do voice conversion. From "Text-free non-parallel many-to-many voice conversion using normalising flows".

The researchers examine two different experimental setting, one in which the voice conversion model takes both text sequences and spectrograms as inputs and one in which it takes spectrograms only. In the second case, the pretrained normalizing-flow model significantly outperformed the benchmarks. A normalizing-flow model that learned the phoneme distribution directly from the training data didn’t fare as well, indicating the importance of the pretraining step.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.
US, WA, Seattle
We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve large-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air Team! We are seeking a highly skilled weather scientist to help invent and develop new models and strategies to support Prime Air’s drone delivery program. In this role, you will develop, build, and implement novel weather solutions using your expertise in atmospheric science, data science, and software development. You will be supported by a team of world class software engineers, systems engineers, and other scientists. Your work will drive cross-functional decision-making through your excellent oral and written communication skills, define system architecture and requirements, enable the scaling of Prime Air’s operation, and produce innovative technological breakthroughs that unlock opportunities to meet our customers' evolving demands. About the team Prime air has ambitious goals to offer its service to an increasing number of customers. Enabling a lot of concurrent flights over many different locations is central to reaching more customers. To this end, the weather team is building algorithms, tools and services for the safe and efficient operation of prime air's autonomous drone fleet.