A quick guide to Amazon’s 50-plus ICASSP papers

Topics range from the predictable, such as speech recognition and signal processing, to time series forecasting and personalization.

Amazon researchers have more than 50 papers at this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP). A plurality of them are on automatic speech recognition and related topics, such as keyword spotting and speaker identification. But others range farther afield, to topics such as computer vision and federated learning.

ICASSP-2022-Header.png
This year's ICASSP includes a virtual component, from May 7 to 13, and an in-person component in Singapore, May 22 to 27.

Acoustic-event detection

Federated self-supervised learning for acoustic event classification
Meng Feng, Chieh-Chi Kao, Qingming Tang, Ming Sun, Viktor Rozgic, Spyros Matsoukas, Chao Wang

Improved representation learning for acoustic event classification using tree-structured ontology
Arman Zharmagambetov, Qingming Tang, Chieh-Chi Kao, Qin Zhang, Ming Sun, Viktor Rozgic, Jasha Droppo, Chao Wang

WikiTAG: Wikipedia-based knowledge embeddings towards improved acoustic event classification
Qin Zhang, Qingming Tang, Chieh-Chi Kao, Ming Sun, Yang Liu, Chao Wang

Automatic speech recognition

A likelihood ratio-based domain adaptation method for end-to-end models
Chhavi Choudhury, Ankur Gandhe, Xiaohan Ding, Ivan Bulyko

Being greedy does not hurt: Sampling strategies for end-to-end speech recognition
Jahn Heymann, Egor Lakomkin, Leif RādellJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif Rādel

Caching networks: Capitalizing on common speech for ASR
Anastasios Alexandridis, Grant P. Strimel, Ariya Rastrow, Pavel Kveton, Jon Webb, Maurizio Omologo, Siegfried Kunzmann, Athanasios Mouchtaris

Lattice attention.png
In "LATTENTION: Lattice attention in ASR rescoring", Amazon researchers show that applying an attention mechanism (colored grid) to a lattice encoding multiple automatic-speech-recognition (ASR) hypotheses improves ASR performance.

Contextual adapters for personalized speech recognition in neural transducers
Kanthashree Mysore Sathyendra, Thejaswi Muniyappa, Feng-Ju Chang, Jing Liu, Jinru Su, Grant P. Strimel, Athanasios Mouchtaris, Siegfried Kunzmann

LATTENTION: Lattice attention in ASR rescoring
Prabhat Pandey, Sergio Duarte Torres, Ali Orkan Bayer, Ankur Gandhe, Volker Leutnant

Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of out-of-vocabulary (OOV) named entities
Nilaksh Das, Monica Sunkara, Dhanush Bekal, Duen Horng Chau, Sravan Bodapati, Katrin Kirchhoff

KG ASR rescoring.png
In "Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of OOV named entities", Amazon researchers show how to improve automatic speech recognition by incorporating information from knowledge graphs into the processing pipeline.

Mitigating closed-model adversarial examples with Bayesian neural modeling for enhanced end-to-end speech recognition
Chao-Han Huck Yang, Zeeshan Ahmed, Yile Gu, Joseph Szurley, Roger Ren, Linda Liu, Andreas Stolcke, Ivan Bulyko

Multi-modal pre-training for automated speech recognition
David M. Chan, Shalini Ghosh, Debmalya Chakrabarty, Björn Hoffmeister

Multiturn encoder.png
The model used in "Multi-turn RNN-T for streaming recognition of multi-party speech" to disentangle overlapping speech in multi-party automatic speech recognition.

Multi-turn RNN-T for streaming recognition of multi-party speech
Ilya Sklyar, Anna Piunova, Xianrui Zheng, Yulan Liu

RescoreBERT: Discriminative speech recognition rescoring with BERT
Liyan Xu, Yile Gu, Jari Kolehmainen, Haidar Khan, Ankur Gandhe, Ariya Rastrow, Andreas Stolcke, Ivan Bulyko

USTED: Improving ASR with a unified speech and text encoder-decoder
Bolaji Yusuf, Ankur Gandhe, Alex Sokolov

VADOI: Voice-activity-detection overlapping inference for end-to-end long-form speech recognition
Jinhan Wang, Xiaosu Tong, Jinxi Guo, Di He, Roland Maas

Computer vision

ASD-transformer: Efficient active speaker detection using self and multimodal transformers
Gourav Datta, Tyler Etchart, Vivek Yadav, Varsha Hedau, Pradeep Natarajan, Shih-Fu Chang

Dynamically pruning SegFormer for efficient semantic segmentation
Haoli Bai, Hongda Mao, Dinesh Nair

Enhancing contrastive learning with temporal cognizance for audio-visual representation generation
Chandrashekhar Lavania, Shiva Sundaram, Sundararajan Srinivasan, Katrin Kirchhoff

Few-shot gaze estimation with model offset predictors
Jiawei Ma, Xu Zhang, Yue Wu, Varsha Hedau, Shih-Fu Chang

Visual representation learning with self-supervised attention for low-label high-data regime
Prarthana Bhattacharyya, Chenge Li, Xiaonan Zhao, István Fehérvári, Jason Sun

Federated learning

Federated learning challenges and opportunities: An outlook
Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, Tao Zhang

FL framework.png
The federated-learning scenario considered in "Federated learning challenges and opportunities: An outlook".

Learnings from federated learning in the real world
Christophe Dupuy, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta, Salman Avestimehr

Information retrieval

Contrastive knowledge graph attention network for request-based recipe recommendation
Xiyao Ma, Zheng Gao, Qian Hu, Mohamed Abdelhady

Keyword spotting

Unified speculation, detection, and verification keyword spotting
Geng-shen Fu, Thibaud Senechal, Aaron Challenner, Tao Zhang

Machine translation

Isometric MT: Neural machine translation for automatic dubbing
Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Natural-language understanding

ADVIN: Automatically discovering novel domains and intents from user text utterances
Nikhita Vedula, Rahul Gupta, Aman Alok, Mukund Sridhar, Shankar Ananthakrishnan

An efficient DP-SGD mechanism for large scale NLU models
Christophe Dupuy, Radhika Arava, Rahul Gupta, Anna Rumshisky

Paralinguistics

Confidence estimation for speech emotion recognition based on the relationship between emotion categories and primitives
Yang Li, Constantinos Papayiannis, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Multi-lingual multi-task speech emotion recognition using wav2vec 2.0
Mayank Sharma

Representation learning through cross-modal conditional teacher-student training for speech emotion recognition
Sundararajan Srinivasan, Zhaocheng Huang, Katrin Kirchhoff

Sentiment-aware automatic speech recognition pre-training for enhanced speech emotion recognition
Ayoub Ghriss, Bo Yang, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Personalization

Incremental user embedding modeling for personalized text classification
Ruixue Lian, Che-Wei Huang, Yuqing Tang, Qilong Gu, Chengyuan Ma, Chenlei (Edward) Guo

Signal processing

Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation
Hao Zhang, Srivatsan Kandadai, Harsha Rao, Minje Kim, Tarun Pruthi, Trausti Kristjansson

Improved singing voice separation with chromagram-based pitch-aware remixing
Siyuan Yuan, Zhepei Wang, Umut Isik, Ritwik Giri, Jean-Marc Valin, Michael M. Goodwin, Arvindh Krishnaswamy

Sparse recovery of acoustic waves
Mohamed Mansour

Upmixing via style transfer: A variational autoencoder for disentangling spatial images and musical content
Haici Yang, Sanna Wager, Spencer Russell, Mike Luo, Minje Kim, Wontak Kim

Sound source localization

End-to-end Alexa device arbitration
Jarred Barber, Yifeng Fan, Tao Zhang

Speaker diarization/identification/verification

ASR-aware end-to-end neural diarization
Aparna Khare, Eunjung Han, Yuguang Yang, Andreas Stolcke

Improving fairness in speaker verification via group-adapted fusion network
Hua Shen, Yuguang Yang, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, Andreas Stolcke

OpenFEAT: Improving speaker identification by open-set few-shot embedding adaptation with Transformer
Kishan K C, Zhenning Tan, Long Chen, Minho Jin, Eunjung Han, Andreas Stolcke, Chul Lee

Self-supervised speaker recognition training using human-machine dialogues
Metehan Cekic, Ruirui Li, Zeya Chen, Yuguang Yang, Andreas Stolcke, Upamanyu Madhow

Self-supervised speaker verification with simple Siamese network and self-supervised regularization
Mufan Sang, Haoqi Li, Fang Liu, Andrew O. Arnold, Li Wan

Spoken-language understanding

A neural prosody encoder for end-to-end dialogue act classification
Kai Wei, Dillon Knox, Martin Radfar, Thanh Tran, Markus Mueller, Grant P. Strimel, Nathan Susanj, Athanasios Mouchtaris, Maurizio Omologo

Multi-task RNN-T with semantic decoder for streamable spoken language understanding
Xuandi Fu, Feng-Ju Chang, Martin Radfar, Kai Wei, Jing Liu, Grant P. Strimel, Kanthashree Mysore Sathyendra

Tie your embeddings down: Cross-modal latent spaces for end-to-end spoken language understanding
Bhuvan Agrawal, Markus Mueller, Samridhi Choudhary, Martin Radfar, Athanasios Mouchtaris, Ross McGowan, Nathan Susanj, Siegfried Kunzmann

TINYS2I: A small-footprint utterance classification model with contextual support for on-device SLU
Anastasios Alexandridis, Kanthashree Mysore Sathyendra, Grant P. Strimel, Pavel Kveton, Jon Webb, Athanasios Mouchtaris

Text-to-speech

Cross-speaker style transfer for text-to-speech using data augmentation
Manuel Sam Ribeiro, Julian Roth, Giulia Comini, Goeric Huybrechts, Adam Gabrys, Jaime Lorenzo-Trueba

Distribution augmentation for low-resource expressive text-to-speech
Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet, Thomas Drugman, Trevor Wood, Elena Sokolova

Duration modeling of neural TTS for automatic dubbing
Johanes Effendi, Yogesh Virkar, Roberto Barra-Chicote, Marcello Federico

Neural speech synthesis on a shoestring: Improving the efficiency of LPCNET
Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Text-free non-parallel many-to-many voice conversion using normalising flows
Thomas Merritt, Abdelhamid Ezzerg, Piotr Biliński, Magdalena Proszewska, Kamil Pokora, Roberto Barra-Chicote, Daniel Korzekwa

VoiceFilter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module
Adam Gabrys, Goeric Huybrechts, Manuel Sam Ribeiro, Chung-Ming Chien, Julian Roth, Giulia Comini, Roberto Barra-Chicote, Bartek Perz, Jaime Lorenzo-Trueba

Time series forecasting

Robust nonparametric distribution forecast with backtest-based bootstrap and adaptive residual selection
Longshaokan Marshall Wang, Lingda Wang, Mina Georgieva, Paulo Machado, Abinaya Ulagappa, Safwan Ahmed, Yan Lu, Arjun Bakshi, Farhad Ghassemi

Research areas

Related content

US, WA, Seattle
At Amazon, we strive every day to be Earth’s most customer centric company. Selling Partner Experience Science (SPeXSci) delivers on this by building AI-enhanced experiences, optimization, and automation that help third-party sellers build more successful businesses. This includes recommendations that drive growth and AI-enhanced assistance for troubleshooting issues. There are many challenges that we confront caused by the volume, diversity, and complexity of our selling partner's needs… and we are always striving to do better. Do you want to join an innovative team who creatively applies techniques ranging from statistics and traditional machine learning to deep learning and natural language processing? A team that drives our flywheel of improvement by hunting down opportunities to do better that are buried in tens of millions of solved cases? Are you interested in helping us redefine what world class support can be in an age of automation and AI, while prizing human empathy and ingenuity? The SPeXSci Team is looking for an Applied Scientist to build statistical and machine learning solutions that help us understand and solve our most challenging problems. We need to better understand our Sellers and the problems they face, to design permanent fixes to recurring problems, to anticipate problems so that we are prepared to deal with them, to measure our success at delighting our customers, and to identify opportunities to grow and improve. In this role, you will have ownership of the end-to-end development of solutions to complex problems and you will play an integral role in strategic decision-making. You will also work closely with engineers, operations teams, product owners to build ML pipelines, platforms and solutions that solve problems of defect detection, automation, and workforce optimization. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA
JP, 13, Tokyo
日本の大学で機械学習や関連領域の研究に従事している学生の皆様に向けたフェローシッププログラムのご案内です。Amazon JapanのRetail Scienceチームでは、何百万人もの顧客にインパクトを与える価値あるテクノロジーに繋がるような、新しいプロトタイプやコンセプトを開発するプロジェクトに従事していただく学生を募集しています。プログラムは1ヶ月から3ヶ月の短期間のプロジェクトになります。 プロジェクトの対象となるテーマには、自然言語処理、表現学習、レコメンデーションシステム、因果推論といった領域が含まれますが、これらに限定されるわけではありません。プロジェクトは、チームのシニアサイエンティスト1名または複数名のガイダンスのもとで定義、遂行され、プロジェクト中は他のサイエンティストもメンターとしてフォローします。 学生の皆様が新しいモデルを考案したり、新しいテクノロジーを活用し実験する時間を最大化できるようにすることが目標です。そのため、プロジェクトではエンジニアリングやスケーリングよりも、プロトタイピングを行い具体的に概念実証を行うことに集中します。 また、Amazonでは論文出版も推奨しています。従事した研究開発活動の成果物として出版される論文には著者として参加することになります。 フェローシッププログラムは目黒の東京オフィスで、他のチームと一緒に行われます。Amazonは、プログラム期間中に必要なIT機器(ラップトップなど)、給与と通勤費を支給します。 Are you a current PhD student enrolled in a Japanese university researching Statistics, Machine Learning, Economics, or a related discipline? The Japan Retail Science team is looking for Fellows for short term (1-3 months) projects to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be assigned a project to carry out from areas including but not limited to natural language processing, representation learning, recommender systems, or causal inference. The project will be defined and carried out under the supervision of one or more of our senior scientists, and you will be assigned another scientist as a mentor to follow you during the project. Our goal is to maximize the time you spend on inventing new models and experimenting with new techniques, so the work will concentrate on prototyping and creating a tangible proof of concept, rather than engineering and scaling. Amazon encourages publications, and you will be included as an author of any published manuscript. The fellowship will be carried out from our Tokyo office in Meguro together with the rest of the team. Amazon will provide the necessary IT equipment (laptop, etc.) for the duration of the fellowship, a salary, and commuting expenses. A day in the life - チームの多くのメンバーは、午前9時くらいから10時半くらいまでの間に仕事を始め、夕方6時から7時には仕事を終えています。出席が必要なミーティングに参加していれば、勤務時間は自由に決められます。 - パートタイムを希望する場合、勤務時間数は採用担当者とともに決定します。フルタイムの場合、労働時間は通常の契約通り週40時間となります。 - オフィスは目黒にあり、週3回の出社が必要です。残りの2日間はリモートワーク、オフィスへの出勤いずれも可能です。 - The majority of the team starts working between 9 and 10.30am until 18-19. You will have complete flexibility to determine your working hours as long as you are present for the meetings where your attendance is required. - Number of working hours will be determined together with the hiring manager in case you want to pursue the Fellowship part-time. In case of full-time, working hours will be 40/week as per a standard contract. - Our office is located in Meguro, and presence in the office is required 3 times/week. You are free to work remotely for the remaining two days or come to the office if you prefer. About the team 私たちのチームは、日本および世界のすべてのAmazonのベンダー企業に提供されるソリューションを支える製品を発明し、開発しています。私たちは、プロダクトマネージャーやビジネス関係者と協力し、科学的なモデルを開発し、インパクトのあるアプリケーションに繋げることで、Amazonのベンダー企業がより速く成長し、顧客により良いサービスを提供できるようにします。 私たちは、科学者同士のコラボレーションが重要であり、孤立した状態で仕事をしても、幸せなチームにはならないと考えています。私たちは、科学者が専門性を高め、最先端の技術についていけるよう、社内の仕組みを通じて継続的に学ぶことに重きを置いています。私たちの目標は、世界中のAmazonのベンダーソリューションの主要なサイエンスチームとなることです。 Our team invents and develops products powering the solutions offered to all Amazon vendors, in Japan and worldwide. We interact with Product Managers and Business stakeholders to develop rigorous science models that are linked to impactful applications helping Amazon vendors grow faster and better serving their customers. We believe that collaboration between scientists is paramount, and working in isolation does not lead to a happy team. We place strong emphasis on continuous learning through internal mechanisms for our scientists to keep on growing their expertise and keep up with the state of the art. Our goal is to be primary science team for vendor solutions in Amazon, worldwide. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
JP, 13, Tokyo
日本の大学で機械学習や関連領域の研究に従事している学生の皆様に向けたフェローシッププログラムのご案内です。Amazon JapanのRetail Scienceチームでは、何百万人もの顧客にインパクトを与える価値あるテクノロジーに繋がるような、新しいプロトタイプやコンセプトを開発するプロジェクトに従事していただく学生を募集しています。プログラムは1ヶ月から3ヶ月の短期間のプロジェクトになります。 プロジェクトの対象となるテーマには、自然言語処理、表現学習、レコメンデーションシステム、因果推論といった領域が含まれますが、これらに限定されるわけではありません。プロジェクトは、チームのシニアサイエンティスト1名または複数名のガイダンスのもとで定義、遂行され、プロジェクト中は他のサイエンティストもメンターとしてフォローします。 学生の皆様が新しいモデルを考案したり、新しいテクノロジーを活用し実験する時間を最大化できるようにすることが目標です。そのため、プロジェクトではエンジニアリングやスケーリングよりも、プロトタイピングを行い具体的に概念実証を行うことに集中します。 また、Amazonでは論文出版も推奨しています。従事した研究開発活動の成果物として出版される論文には著者として参加することになります。 フェローシッププログラムは目黒の東京オフィスで、他のチームと一緒に行われます。Amazonは、プログラム期間中に必要なIT機器(ラップトップなど)、給与と通勤費を支給します。 Are you a current PhD student enrolled in a Japanese university researching Statistics, Machine Learning, Economics, or a related discipline? The Japan Retail Science team is looking for Fellows for short term (1-3 months) projects to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be assigned a project to carry out from areas including but not limited to natural language processing, representation learning, recommender systems, or causal inference. The project will be defined and carried out under the supervision of one or more of our senior scientists, and you will be assigned another scientist as a mentor to follow you during the project. Our goal is to maximize the time you spend on inventing new models and experimenting with new techniques, so the work will concentrate on prototyping and creating a tangible proof of concept, rather than engineering and scaling. Amazon encourages publications, and you will be included as an author of any published manuscript. The fellowship will be carried out from our Tokyo office in Meguro together with the rest of the team. Amazon will provide the necessary IT equipment (laptop, etc.) for the duration of the fellowship, a salary, and commuting expenses. A day in the life - チームの多くのメンバーは、午前9時くらいから10時半くらいまでの間に仕事を始め、夕方6時から7時には仕事を終えています。出席が必要なミーティングに参加していれば、勤務時間は自由に決められます。 - パートタイムを希望する場合、勤務時間数は採用担当者とともに決定します。フルタイムの場合、労働時間は通常の契約通り週40時間となります。 - オフィスは目黒にあり、週3回の出社が必要です。残りの2日間はリモートワーク、オフィスへの出勤いずれも可能です。 - The majority of the team starts working between 9 and 10.30am until 18-19. You will have complete flexibility to determine your working hours as long as you are present for the meetings where your attendance is required. - Number of working hours will be determined together with the hiring manager in case you want to pursue the Fellowship part-time. In case of full-time, working hours will be 40/week as per a standard contract. - Our office is located in Meguro, and presence in the office is required 3 times/week. You are free to work remotely for the remaining two days or come to the office if you prefer. About the team 私たちのチームは、日本および世界のすべてのAmazonのベンダー企業に提供されるソリューションを支える製品を発明し、開発しています。私たちは、プロダクトマネージャーやビジネス関係者と協力し、科学的なモデルを開発し、インパクトのあるアプリケーションに繋げることで、Amazonのベンダー企業がより速く成長し、顧客により良いサービスを提供できるようにします。 私たちは、科学者同士のコラボレーションが重要であり、孤立した状態で仕事をしても、幸せなチームにはならないと考えています。私たちは、科学者が専門性を高め、最先端の技術についていけるよう、社内の仕組みを通じて継続的に学ぶことに重きを置いています。私たちの目標は、世界中のAmazonのベンダーソリューションの主要なサイエンスチームとなることです。 Our team invents and develops products powering the solutions offered to all Amazon vendors, in Japan and worldwide. We interact with Product Managers and Business stakeholders to develop rigorous science models that are linked to impactful applications helping Amazon vendors grow faster and better serving their customers. We believe that collaboration between scientists is paramount, and working in isolation does not lead to a happy team. We place strong emphasis on continuous learning through internal mechanisms for our scientists to keep on growing their expertise and keep up with the state of the art. Our goal is to be primary science team for vendor solutions in Amazon, worldwide. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
US, WA, Seattle
As a Senior Data Scientist with expertise in Machine Learning (ML), development and use of multi-model models, utilizing diverse sets of large data you will work with a team of Applied Scientists and Software Engineers to build innovative foundation models for robotic manipulation utilizing computer vision and scene perception technology. Your role will focus first on feature engineering, data collection and data usage from large data sets across Fulfillment Technologies and Robotics (FTR), with an eye on strategy going forward to unify a data strategy across organizations. This position requires high levels of analytical thinking, ability to quickly approach large ambiguous problems and apply analytics, technical and engineering expertise to rapidly analyze, validate, visualize, prototype and deliver solutions. Key job responsibilities - Utilize expertise in feature engineering on massive data sets through exploratory data analysis across existing large data sets in Fulfillment Technologies and Robotics (FTR). Help identify areas where we could create new data sources that would improve training capabilities based on understanding of how different scenes in FCs could impact the trained model and ultimately performance of robotic manipulation. - Identify data requirements, build methodology and data modeling strategy across the diverse data sets for both short-term and long-term needs - Work closely with Applied Scientists in building FM solutions, ensuring that the data strategy fits the experimentation paths, as well as contribute to the FM strategy through identifying opportunities based on the data - Work with and develop large datasets (training/fine tuning) and bring large datasets together to inform both training in FOMO as well as across FTR - Design and implement data solutions, working closely with engineers to guide on best paths for building data pipelines and infrastructure for model training - Collaborate across teams both within and outside of FOMO on data strategy A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
IN, KA, Bangalore
Are you interested in changing the Digital Reading Experience? We are from Kindle Books Team looking for a set of Scientists to take the reading experience in Kindle to next level with a set of innovations! We envision Kindle as the place where readers find the best manifestation of all written content optimized with features that enable them to get the most out of reading, and creators are able to realize their vision to customers quickly and at scale. Every time customers open their content, regardless of surface, they start or restart their reading in a familiar, useful and engaging place. We achieve this by building a strong foundation of core experiences and act as a force multiplier and partner for content creators (directly or indirectly) to easily innovate on top of Kindle's purpose built content experience stack in a simple and extensible way. We will achieve this by providing a best-in-class reading experience, unique content experiences, and remaining agile in meeting the evolving needs and preferences of our users. Our goal is to foster long-lasting reading habits and make us the preferred destination for enriching literary experiences. We are building a In The Book Science team and looking for Scientists, who are passionate about Reading and are willing to take Reading to the next level. Every Book is a complex structure with different entities, layout, format and semantics, with more than 17MM eBooks in our catalog. We are looking for experts in all domains like core NLP, Generative AI, CV and Deep Learning Techniques for unlocking capabilities like analysis, enhancement, curation, moderation, translation, transformation and generation in Books based on Content structure, features, Intent & Synthesis. Scientists will focus on Inside the book content and semantically learn the different entities to enhance the Reading experience overall (Kindle & beyond). They have an opportunity to influence in 2 major phases of life-cycle - Publishing (Creation of Books process) and Reading experience (building engaging features & representation in the book thereby driving reading engagement). Key job responsibilities - 3+ years of building machine learning models for business application experience - PhD, or Master's degree and 2+ years of applied research experience - Knowledge of programming languages such as C/C++, Python, Java or Perl - Experience programming in Java, C++, Python or related language - You have expertise in one of the applied science disciplines, such as machine learning, natural language processing, computer vision, Deep learning - You are able to use reasonable assumptions, data, and customer requirements to solve problems. - You initiate the design, development, execution, and implementation of smaller components with input and guidance from team members. - You work with SDEs to deliver solutions into production to benefit customers or an area of the business. - You assume responsibility for the code in your components. You write secure, stable, testable, maintainable code with minimal defects. - You understand basic data structures, algorithms, model evaluation techniques, performance, and optimality tradeoffs. - You follow engineering and scientific method best practices. You get your designs, models, and code reviewed. You test your code and models thoroughly - You participate in team design, scoping and prioritization discussions. You are able to map a business goal to a scientific problem and map business metrics to technical metrics. - You invent, refine and develop your solutions to ensure they are meeting customer needs and team goals. You keep current with research trends in your area of expertise and scrutinize your results. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test solutions to improve our experience. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, model development and productionizing the same. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. We are open to hiring candidates to work out of one of the following locations: Bangalore, IND | Bangalore, KA, IND
US, WA, Seattle
Selling Partner Promotions is seeking a Sr. Economist to use econometric and machine learning techniques to help offer Customers high quality deals and promotions. This role will be a key member of a team of scientists supporting the Pricing and Promotions related business. The Sr. Economist will work closely with other research scientists, machine learning experts, and economists to design and run experiments, research new algorithms, and find new ways to improve Seller Pricing and Promotions to optimize the Customer experience. Key job responsibilities - Build economic models to quantify the causal impact of pricing actions and promotions on customers and sellers. - Build models to define, measure and optimize for high quality deals - Define and execute an extensive experimental roadmap to test hypotheses and validate the outputs of models. - Create models that allow an optimization of selling partner ROI and customer long-term value. - Evaluate and validate the proposed models via offline benchmark tests as well as online A/B tests in production. - Publish and present your work at internal and external scientific venues. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
IN, KA, Bengaluru
The Amazon Artificial Generative Intelligence (AGI) team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key job responsibilities - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
US, WA, Seattle
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a collaborative, smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking enthusiastic Applied Scientists with a passion for robotic research. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. Key job responsibilities • Research, design, implement and evaluate complex perception, motion planning, and decision making algorithms integrating across multiple disciplines and leveraging machine learning. • Create experiments and prototype implementations of new learning algorithms and prediction techniques. • Work closely with software engineering team members to drive scalable, real-time implementations. • Collaborate with machine learning and robotic controls experts to implement and deploy algorithms, such as machine learning models. • Collaborate closely with hardware engineering team members on developing systems from prototyping to production level. • Represent Amazon in academia community through publications and scientific presentations. • Work with stakeholders across hardware, science, and operations teams to iterate on systems design and implementation. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental measurement techniques. Candidates with a track record of original scientific contributions in experimental device physics will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities As a research scientist you will be responsible for building experiments that encompass the integrated stack: design, fabrication, cryogenics, signal chain, and control stack software. Based on your tests you will provide recommendations that improve our next-generation quantum processors. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. We are open to hiring candidates to work out of one of the following locations: Pasadena, CA, USA