A quick guide to Amazon’s 50-plus ICASSP papers 2022

Topics range from the predictable, such as speech recognition and signal processing, to time series forecasting and personalization.

Amazon researchers have more than 50 papers at this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP). A plurality of them are on automatic speech recognition and related topics, such as keyword spotting and speaker identification. But others range farther afield, to topics such as computer vision and federated learning.

ICASSP-2022-Header.png
This year's ICASSP includes a virtual component, from May 7 to 13, and an in-person component in Singapore, May 22 to 27.

Acoustic-event detection

Federated self-supervised learning for acoustic event classification
Meng Feng, Chieh-Chi Kao, Qingming Tang, Ming Sun, Viktor Rozgic, Spyros Matsoukas, Chao Wang

Improved representation learning for acoustic event classification using tree-structured ontology
Arman Zharmagambetov, Qingming Tang, Chieh-Chi Kao, Qin Zhang, Ming Sun, Viktor Rozgic, Jasha Droppo, Chao Wang

WikiTAG: Wikipedia-based knowledge embeddings towards improved acoustic event classification
Qin Zhang, Qingming Tang, Chieh-Chi Kao, Ming Sun, Yang Liu, Chao Wang

Automatic speech recognition

A likelihood ratio-based domain adaptation method for end-to-end models
Chhavi Choudhury, Ankur Gandhe, Xiaohan Ding, Ivan Bulyko

Being greedy does not hurt: Sampling strategies for end-to-end speech recognition
Jahn Heymann, Egor Lakomkin, Leif RādellJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif Rādel

Caching networks: Capitalizing on common speech for ASR
Anastasios Alexandridis, Grant P. Strimel, Ariya Rastrow, Pavel Kveton, Jon Webb, Maurizio Omologo, Siegfried Kunzmann, Athanasios Mouchtaris

Lattice attention.png
In "LATTENTION: Lattice attention in ASR rescoring", Amazon researchers show that applying an attention mechanism (colored grid) to a lattice encoding multiple automatic-speech-recognition (ASR) hypotheses improves ASR performance.

Contextual adapters for personalized speech recognition in neural transducers
Kanthashree Mysore Sathyendra, Thejaswi Muniyappa, Feng-Ju Chang, Jing Liu, Jinru Su, Grant P. Strimel, Athanasios Mouchtaris, Siegfried Kunzmann

LATTENTION: Lattice attention in ASR rescoring
Prabhat Pandey, Sergio Duarte Torres, Ali Orkan Bayer, Ankur Gandhe, Volker Leutnant

Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of out-of-vocabulary (OOV) named entities
Nilaksh Das, Monica Sunkara, Dhanush Bekal, Duen Horng Chau, Sravan Bodapati, Katrin Kirchhoff

KG ASR rescoring.png
In "Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of OOV named entities", Amazon researchers show how to improve automatic speech recognition by incorporating information from knowledge graphs into the processing pipeline.

Mitigating closed-model adversarial examples with Bayesian neural modeling for enhanced end-to-end speech recognition
Chao-Han Huck Yang, Zeeshan Ahmed, Yile Gu, Joseph Szurley, Roger Ren, Linda Liu, Andreas Stolcke, Ivan Bulyko

Multi-modal pre-training for automated speech recognition
David M. Chan, Shalini Ghosh, Debmalya Chakrabarty, Björn Hoffmeister

Multiturn encoder.png
The model used in "Multi-turn RNN-T for streaming recognition of multi-party speech" to disentangle overlapping speech in multi-party automatic speech recognition.

Multi-turn RNN-T for streaming recognition of multi-party speech
Ilya Sklyar, Anna Piunova, Xianrui Zheng, Yulan Liu

RescoreBERT: Discriminative speech recognition rescoring with BERT
Liyan Xu, Yile Gu, Jari Kolehmainen, Haidar Khan, Ankur Gandhe, Ariya Rastrow, Andreas Stolcke, Ivan Bulyko

USTED: Improving ASR with a unified speech and text encoder-decoder
Bolaji Yusuf, Ankur Gandhe, Alex Sokolov

VADOI: Voice-activity-detection overlapping inference for end-to-end long-form speech recognition
Jinhan Wang, Xiaosu Tong, Jinxi Guo, Di He, Roland Maas

Computer vision

ASD-transformer: Efficient active speaker detection using self and multimodal transformers
Gourav Datta, Tyler Etchart, Vivek Yadav, Varsha Hedau, Pradeep Natarajan, Shih-Fu Chang

Dynamically pruning SegFormer for efficient semantic segmentation
Haoli Bai, Hongda Mao, Dinesh Nair

Enhancing contrastive learning with temporal cognizance for audio-visual representation generation
Chandrashekhar Lavania, Shiva Sundaram, Sundararajan Srinivasan, Katrin Kirchhoff

Few-shot gaze estimation with model offset predictors
Jiawei Ma, Xu Zhang, Yue Wu, Varsha Hedau, Shih-Fu Chang

Visual representation learning with self-supervised attention for low-label high-data regime
Prarthana Bhattacharyya, Chenge Li, Xiaonan Zhao, István Fehérvári, Jason Sun

Federated learning

Federated learning challenges and opportunities: An outlook
Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, Tao Zhang

FL framework.png
The federated-learning scenario considered in "Federated learning challenges and opportunities: An outlook".

Learnings from federated learning in the real world
Christophe Dupuy, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta, Salman Avestimehr

Information retrieval

Contrastive knowledge graph attention network for request-based recipe recommendation
Xiyao Ma, Zheng Gao, Qian Hu, Mohamed Abdelhady

Keyword spotting

Unified speculation, detection, and verification keyword spotting
Geng-shen Fu, Thibaud Senechal, Aaron Challenner, Tao Zhang

Machine translation

Isometric MT: Neural machine translation for automatic dubbing
Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Natural-language understanding

ADVIN: Automatically discovering novel domains and intents from user text utterances
Nikhita Vedula, Rahul Gupta, Aman Alok, Mukund Sridhar, Shankar Ananthakrishnan

An efficient DP-SGD mechanism for large scale NLU models
Christophe Dupuy, Radhika Arava, Rahul Gupta, Anna Rumshisky

Paralinguistics

Confidence estimation for speech emotion recognition based on the relationship between emotion categories and primitives
Yang Li, Constantinos Papayiannis, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Multi-lingual multi-task speech emotion recognition using wav2vec 2.0
Mayank Sharma

Representation learning through cross-modal conditional teacher-student training for speech emotion recognition
Sundararajan Srinivasan, Zhaocheng Huang, Katrin Kirchhoff

Sentiment-aware automatic speech recognition pre-training for enhanced speech emotion recognition
Ayoub Ghriss, Bo Yang, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Personalization

Incremental user embedding modeling for personalized text classification
Ruixue Lian, Che-Wei Huang, Yuqing Tang, Qilong Gu, Chengyuan Ma, Chenlei (Edward) Guo

Signal processing

Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation
Hao Zhang, Srivatsan Kandadai, Harsha Rao, Minje Kim, Tarun Pruthi, Trausti Kristjansson

Improved singing voice separation with chromagram-based pitch-aware remixing
Siyuan Yuan, Zhepei Wang, Umut Isik, Ritwik Giri, Jean-Marc Valin, Michael M. Goodwin, Arvindh Krishnaswamy

Sparse recovery of acoustic waves
Mohamed Mansour

Upmixing via style transfer: A variational autoencoder for disentangling spatial images and musical content
Haici Yang, Sanna Wager, Spencer Russell, Mike Luo, Minje Kim, Wontak Kim

Sound source localization

End-to-end Alexa device arbitration
Jarred Barber, Yifeng Fan, Tao Zhang

Speaker diarization/identification/verification

ASR-aware end-to-end neural diarization
Aparna Khare, Eunjung Han, Yuguang Yang, Andreas Stolcke

Improving fairness in speaker verification via group-adapted fusion network
Hua Shen, Yuguang Yang, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, Andreas Stolcke

OpenFEAT: Improving speaker identification by open-set few-shot embedding adaptation with Transformer
Kishan K C, Zhenning Tan, Long Chen, Minho Jin, Eunjung Han, Andreas Stolcke, Chul Lee

Self-supervised speaker recognition training using human-machine dialogues
Metehan Cekic, Ruirui Li, Zeya Chen, Yuguang Yang, Andreas Stolcke, Upamanyu Madhow

Self-supervised speaker verification with simple Siamese network and self-supervised regularization
Mufan Sang, Haoqi Li, Fang Liu, Andrew O. Arnold, Li Wan

Spoken-language understanding

A neural prosody encoder for end-to-end dialogue act classification
Kai Wei, Dillon Knox, Martin Radfar, Thanh Tran, Markus Mueller, Grant P. Strimel, Nathan Susanj, Athanasios Mouchtaris, Maurizio Omologo

Multi-task RNN-T with semantic decoder for streamable spoken language understanding
Xuandi Fu, Feng-Ju Chang, Martin Radfar, Kai Wei, Jing Liu, Grant P. Strimel, Kanthashree Mysore Sathyendra

Tie your embeddings down: Cross-modal latent spaces for end-to-end spoken language understanding
Bhuvan Agrawal, Markus Mueller, Samridhi Choudhary, Martin Radfar, Athanasios Mouchtaris, Ross McGowan, Nathan Susanj, Siegfried Kunzmann

TINYS2I: A small-footprint utterance classification model with contextual support for on-device SLU
Anastasios Alexandridis, Kanthashree Mysore Sathyendra, Grant P. Strimel, Pavel Kveton, Jon Webb, Athanasios Mouchtaris

Text-to-speech

Cross-speaker style transfer for text-to-speech using data augmentation
Manuel Sam Ribeiro, Julian Roth, Giulia Comini, Goeric Huybrechts, Adam Gabrys, Jaime Lorenzo-Trueba

Distribution augmentation for low-resource expressive text-to-speech
Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet, Thomas Drugman, Trevor Wood, Elena Sokolova

Duration modeling of neural TTS for automatic dubbing
Johanes Effendi, Yogesh Virkar, Roberto Barra-Chicote, Marcello Federico

Neural speech synthesis on a shoestring: Improving the efficiency of LPCNET
Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Text-free non-parallel many-to-many voice conversion using normalising flows
Thomas Merritt, Abdelhamid Ezzerg, Piotr Biliński, Magdalena Proszewska, Kamil Pokora, Roberto Barra-Chicote, Daniel Korzekwa

VoiceFilter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module
Adam Gabrys, Goeric Huybrechts, Manuel Sam Ribeiro, Chung-Ming Chien, Julian Roth, Giulia Comini, Roberto Barra-Chicote, Bartek Perz, Jaime Lorenzo-Trueba

Time series forecasting

Robust nonparametric distribution forecast with backtest-based bootstrap and adaptive residual selection
Longshaokan Marshall Wang, Lingda Wang, Mina Georgieva, Paulo Machado, Abinaya Ulagappa, Safwan Ahmed, Yan Lu, Arjun Bakshi, Farhad Ghassemi

Research areas

Related content

US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
CA, ON, Toronto
The RBKS AI team is responsible for innovating AI features for Ring and Blink cameras, with a mission to make our neighborhoods safer. We are working at the intersection of computer vision, generative AI (GenAI), and ambient intelligence. The team is seeking Applied Science Manager to lead initiatives that combine advanced computer vision and multimodal GenAI capabilities. This role offers a unique opportunity to lead a world-class team while shaping next-generation home security technology and advancing the field of AI algorithms and systems. The team is focused on productizing research in computer vision and GenAI into products that benefit millions of customers worldwide, such as real-time object detection, video understanding, and multimodal LLMs. We are at the forefront of developing AI solutions that seamlessly blend into our products while respecting privacy, delivering unprecedented levels of intelligent security experience. Key job responsibilities - Lead and guide a team of applied scientists in designing and developing advanced computer vision and GenAI models and algorithms for comprehensive video understanding, including but not limited to object detection, recognition and spatial understanding - Drive technical strategy and roadmap for privacy-preserving CV and GenAI models and systems, ensuring the team delivers efficient fine-tuning and on-device and in-cloud inference solutions - Partner with product and engineering leadership to translate business objectives into technical roadmaps, and ensure delivery of high-quality science artifacts that ship to products - Build and maintain strategic partnerships with science, engineering, product, and program management teams across the organization - Recruit, mentor, and develop top-tier applied science talent; provide technical and career guidance to team members while fostering a culture of innovation and excellence - Set technical direction and establish best practices for AI products/features across multiple projects and initiatives