A quick guide to Amazon’s 50-plus ICASSP papers 2022

Topics range from the predictable, such as speech recognition and signal processing, to time series forecasting and personalization.

Amazon researchers have more than 50 papers at this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP). A plurality of them are on automatic speech recognition and related topics, such as keyword spotting and speaker identification. But others range farther afield, to topics such as computer vision and federated learning.

ICASSP-2022-Header.png
This year's ICASSP includes a virtual component, from May 7 to 13, and an in-person component in Singapore, May 22 to 27.

Acoustic-event detection

Federated self-supervised learning for acoustic event classification
Meng Feng, Chieh-Chi Kao, Qingming Tang, Ming Sun, Viktor Rozgic, Spyros Matsoukas, Chao Wang

Improved representation learning for acoustic event classification using tree-structured ontology
Arman Zharmagambetov, Qingming Tang, Chieh-Chi Kao, Qin Zhang, Ming Sun, Viktor Rozgic, Jasha Droppo, Chao Wang

WikiTAG: Wikipedia-based knowledge embeddings towards improved acoustic event classification
Qin Zhang, Qingming Tang, Chieh-Chi Kao, Ming Sun, Yang Liu, Chao Wang

Automatic speech recognition

A likelihood ratio-based domain adaptation method for end-to-end models
Chhavi Choudhury, Ankur Gandhe, Xiaohan Ding, Ivan Bulyko

Being greedy does not hurt: Sampling strategies for end-to-end speech recognition
Jahn Heymann, Egor Lakomkin, Leif RādellJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif Rādel

Caching networks: Capitalizing on common speech for ASR
Anastasios Alexandridis, Grant P. Strimel, Ariya Rastrow, Pavel Kveton, Jon Webb, Maurizio Omologo, Siegfried Kunzmann, Athanasios Mouchtaris

Lattice attention.png
In "LATTENTION: Lattice attention in ASR rescoring", Amazon researchers show that applying an attention mechanism (colored grid) to a lattice encoding multiple automatic-speech-recognition (ASR) hypotheses improves ASR performance.

Contextual adapters for personalized speech recognition in neural transducers
Kanthashree Mysore Sathyendra, Thejaswi Muniyappa, Feng-Ju Chang, Jing Liu, Jinru Su, Grant P. Strimel, Athanasios Mouchtaris, Siegfried Kunzmann

LATTENTION: Lattice attention in ASR rescoring
Prabhat Pandey, Sergio Duarte Torres, Ali Orkan Bayer, Ankur Gandhe, Volker Leutnant

Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of out-of-vocabulary (OOV) named entities
Nilaksh Das, Monica Sunkara, Dhanush Bekal, Duen Horng Chau, Sravan Bodapati, Katrin Kirchhoff

KG ASR rescoring.png
In "Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of OOV named entities", Amazon researchers show how to improve automatic speech recognition by incorporating information from knowledge graphs into the processing pipeline.

Mitigating closed-model adversarial examples with Bayesian neural modeling for enhanced end-to-end speech recognition
Chao-Han Huck Yang, Zeeshan Ahmed, Yile Gu, Joseph Szurley, Roger Ren, Linda Liu, Andreas Stolcke, Ivan Bulyko

Multi-modal pre-training for automated speech recognition
David M. Chan, Shalini Ghosh, Debmalya Chakrabarty, Björn Hoffmeister

Multiturn encoder.png
The model used in "Multi-turn RNN-T for streaming recognition of multi-party speech" to disentangle overlapping speech in multi-party automatic speech recognition.

Multi-turn RNN-T for streaming recognition of multi-party speech
Ilya Sklyar, Anna Piunova, Xianrui Zheng, Yulan Liu

RescoreBERT: Discriminative speech recognition rescoring with BERT
Liyan Xu, Yile Gu, Jari Kolehmainen, Haidar Khan, Ankur Gandhe, Ariya Rastrow, Andreas Stolcke, Ivan Bulyko

USTED: Improving ASR with a unified speech and text encoder-decoder
Bolaji Yusuf, Ankur Gandhe, Alex Sokolov

VADOI: Voice-activity-detection overlapping inference for end-to-end long-form speech recognition
Jinhan Wang, Xiaosu Tong, Jinxi Guo, Di He, Roland Maas

Computer vision

ASD-transformer: Efficient active speaker detection using self and multimodal transformers
Gourav Datta, Tyler Etchart, Vivek Yadav, Varsha Hedau, Pradeep Natarajan, Shih-Fu Chang

Dynamically pruning SegFormer for efficient semantic segmentation
Haoli Bai, Hongda Mao, Dinesh Nair

Enhancing contrastive learning with temporal cognizance for audio-visual representation generation
Chandrashekhar Lavania, Shiva Sundaram, Sundararajan Srinivasan, Katrin Kirchhoff

Few-shot gaze estimation with model offset predictors
Jiawei Ma, Xu Zhang, Yue Wu, Varsha Hedau, Shih-Fu Chang

Visual representation learning with self-supervised attention for low-label high-data regime
Prarthana Bhattacharyya, Chenge Li, Xiaonan Zhao, István Fehérvári, Jason Sun

Federated learning

Federated learning challenges and opportunities: An outlook
Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, Tao Zhang

FL framework.png
The federated-learning scenario considered in "Federated learning challenges and opportunities: An outlook".

Learnings from federated learning in the real world
Christophe Dupuy, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta, Salman Avestimehr

Information retrieval

Contrastive knowledge graph attention network for request-based recipe recommendation
Xiyao Ma, Zheng Gao, Qian Hu, Mohamed Abdelhady

Keyword spotting

Unified speculation, detection, and verification keyword spotting
Geng-shen Fu, Thibaud Senechal, Aaron Challenner, Tao Zhang

Machine translation

Isometric MT: Neural machine translation for automatic dubbing
Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Natural-language understanding

ADVIN: Automatically discovering novel domains and intents from user text utterances
Nikhita Vedula, Rahul Gupta, Aman Alok, Mukund Sridhar, Shankar Ananthakrishnan

An efficient DP-SGD mechanism for large scale NLU models
Christophe Dupuy, Radhika Arava, Rahul Gupta, Anna Rumshisky

Paralinguistics

Confidence estimation for speech emotion recognition based on the relationship between emotion categories and primitives
Yang Li, Constantinos Papayiannis, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Multi-lingual multi-task speech emotion recognition using wav2vec 2.0
Mayank Sharma

Representation learning through cross-modal conditional teacher-student training for speech emotion recognition
Sundararajan Srinivasan, Zhaocheng Huang, Katrin Kirchhoff

Sentiment-aware automatic speech recognition pre-training for enhanced speech emotion recognition
Ayoub Ghriss, Bo Yang, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Personalization

Incremental user embedding modeling for personalized text classification
Ruixue Lian, Che-Wei Huang, Yuqing Tang, Qilong Gu, Chengyuan Ma, Chenlei (Edward) Guo

Signal processing

Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation
Hao Zhang, Srivatsan Kandadai, Harsha Rao, Minje Kim, Tarun Pruthi, Trausti Kristjansson

Improved singing voice separation with chromagram-based pitch-aware remixing
Siyuan Yuan, Zhepei Wang, Umut Isik, Ritwik Giri, Jean-Marc Valin, Michael M. Goodwin, Arvindh Krishnaswamy

Sparse recovery of acoustic waves
Mohamed Mansour

Upmixing via style transfer: A variational autoencoder for disentangling spatial images and musical content
Haici Yang, Sanna Wager, Spencer Russell, Mike Luo, Minje Kim, Wontak Kim

Sound source localization

End-to-end Alexa device arbitration
Jarred Barber, Yifeng Fan, Tao Zhang

Speaker diarization/identification/verification

ASR-aware end-to-end neural diarization
Aparna Khare, Eunjung Han, Yuguang Yang, Andreas Stolcke

Improving fairness in speaker verification via group-adapted fusion network
Hua Shen, Yuguang Yang, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, Andreas Stolcke

OpenFEAT: Improving speaker identification by open-set few-shot embedding adaptation with Transformer
Kishan K C, Zhenning Tan, Long Chen, Minho Jin, Eunjung Han, Andreas Stolcke, Chul Lee

Self-supervised speaker recognition training using human-machine dialogues
Metehan Cekic, Ruirui Li, Zeya Chen, Yuguang Yang, Andreas Stolcke, Upamanyu Madhow

Self-supervised speaker verification with simple Siamese network and self-supervised regularization
Mufan Sang, Haoqi Li, Fang Liu, Andrew O. Arnold, Li Wan

Spoken-language understanding

A neural prosody encoder for end-to-end dialogue act classification
Kai Wei, Dillon Knox, Martin Radfar, Thanh Tran, Markus Mueller, Grant P. Strimel, Nathan Susanj, Athanasios Mouchtaris, Maurizio Omologo

Multi-task RNN-T with semantic decoder for streamable spoken language understanding
Xuandi Fu, Feng-Ju Chang, Martin Radfar, Kai Wei, Jing Liu, Grant P. Strimel, Kanthashree Mysore Sathyendra

Tie your embeddings down: Cross-modal latent spaces for end-to-end spoken language understanding
Bhuvan Agrawal, Markus Mueller, Samridhi Choudhary, Martin Radfar, Athanasios Mouchtaris, Ross McGowan, Nathan Susanj, Siegfried Kunzmann

TINYS2I: A small-footprint utterance classification model with contextual support for on-device SLU
Anastasios Alexandridis, Kanthashree Mysore Sathyendra, Grant P. Strimel, Pavel Kveton, Jon Webb, Athanasios Mouchtaris

Text-to-speech

Cross-speaker style transfer for text-to-speech using data augmentation
Manuel Sam Ribeiro, Julian Roth, Giulia Comini, Goeric Huybrechts, Adam Gabrys, Jaime Lorenzo-Trueba

Distribution augmentation for low-resource expressive text-to-speech
Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet, Thomas Drugman, Trevor Wood, Elena Sokolova

Duration modeling of neural TTS for automatic dubbing
Johanes Effendi, Yogesh Virkar, Roberto Barra-Chicote, Marcello Federico

Neural speech synthesis on a shoestring: Improving the efficiency of LPCNET
Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Text-free non-parallel many-to-many voice conversion using normalising flows
Thomas Merritt, Abdelhamid Ezzerg, Piotr Biliński, Magdalena Proszewska, Kamil Pokora, Roberto Barra-Chicote, Daniel Korzekwa

VoiceFilter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module
Adam Gabrys, Goeric Huybrechts, Manuel Sam Ribeiro, Chung-Ming Chien, Julian Roth, Giulia Comini, Roberto Barra-Chicote, Bartek Perz, Jaime Lorenzo-Trueba

Time series forecasting

Robust nonparametric distribution forecast with backtest-based bootstrap and adaptive residual selection
Longshaokan Marshall Wang, Lingda Wang, Mina Georgieva, Paulo Machado, Abinaya Ulagappa, Safwan Ahmed, Yan Lu, Arjun Bakshi, Farhad Ghassemi

Research areas

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.