A quick guide to Amazon’s 50-plus ICASSP papers 2022

Topics range from the predictable, such as speech recognition and signal processing, to time series forecasting and personalization.

Amazon researchers have more than 50 papers at this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP). A plurality of them are on automatic speech recognition and related topics, such as keyword spotting and speaker identification. But others range farther afield, to topics such as computer vision and federated learning.

ICASSP-2022-Header.png
This year's ICASSP includes a virtual component, from May 7 to 13, and an in-person component in Singapore, May 22 to 27.

Acoustic-event detection

Federated self-supervised learning for acoustic event classification
Meng Feng, Chieh-Chi Kao, Qingming Tang, Ming Sun, Viktor Rozgic, Spyros Matsoukas, Chao Wang

Improved representation learning for acoustic event classification using tree-structured ontology
Arman Zharmagambetov, Qingming Tang, Chieh-Chi Kao, Qin Zhang, Ming Sun, Viktor Rozgic, Jasha Droppo, Chao Wang

WikiTAG: Wikipedia-based knowledge embeddings towards improved acoustic event classification
Qin Zhang, Qingming Tang, Chieh-Chi Kao, Ming Sun, Yang Liu, Chao Wang

Automatic speech recognition

A likelihood ratio-based domain adaptation method for end-to-end models
Chhavi Choudhury, Ankur Gandhe, Xiaohan Ding, Ivan Bulyko

Being greedy does not hurt: Sampling strategies for end-to-end speech recognition
Jahn Heymann, Egor Lakomkin, Leif RādellJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif RādelJahn Heymann, Egor Lakomkin, Leif Rādel

Caching networks: Capitalizing on common speech for ASR
Anastasios Alexandridis, Grant P. Strimel, Ariya Rastrow, Pavel Kveton, Jon Webb, Maurizio Omologo, Siegfried Kunzmann, Athanasios Mouchtaris

Lattice attention.png
In "LATTENTION: Lattice attention in ASR rescoring", Amazon researchers show that applying an attention mechanism (colored grid) to a lattice encoding multiple automatic-speech-recognition (ASR) hypotheses improves ASR performance.

Contextual adapters for personalized speech recognition in neural transducers
Kanthashree Mysore Sathyendra, Thejaswi Muniyappa, Feng-Ju Chang, Jing Liu, Jinru Su, Grant P. Strimel, Athanasios Mouchtaris, Siegfried Kunzmann

LATTENTION: Lattice attention in ASR rescoring
Prabhat Pandey, Sergio Duarte Torres, Ali Orkan Bayer, Ankur Gandhe, Volker Leutnant

Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of out-of-vocabulary (OOV) named entities
Nilaksh Das, Monica Sunkara, Dhanush Bekal, Duen Horng Chau, Sravan Bodapati, Katrin Kirchhoff

KG ASR rescoring.png
In "Listen, know and spell: Knowledge-infused subword modeling for improving ASR performance of OOV named entities", Amazon researchers show how to improve automatic speech recognition by incorporating information from knowledge graphs into the processing pipeline.

Mitigating closed-model adversarial examples with Bayesian neural modeling for enhanced end-to-end speech recognition
Chao-Han Huck Yang, Zeeshan Ahmed, Yile Gu, Joseph Szurley, Roger Ren, Linda Liu, Andreas Stolcke, Ivan Bulyko

Multi-modal pre-training for automated speech recognition
David M. Chan, Shalini Ghosh, Debmalya Chakrabarty, Björn Hoffmeister

Multiturn encoder.png
The model used in "Multi-turn RNN-T for streaming recognition of multi-party speech" to disentangle overlapping speech in multi-party automatic speech recognition.

Multi-turn RNN-T for streaming recognition of multi-party speech
Ilya Sklyar, Anna Piunova, Xianrui Zheng, Yulan Liu

RescoreBERT: Discriminative speech recognition rescoring with BERT
Liyan Xu, Yile Gu, Jari Kolehmainen, Haidar Khan, Ankur Gandhe, Ariya Rastrow, Andreas Stolcke, Ivan Bulyko

USTED: Improving ASR with a unified speech and text encoder-decoder
Bolaji Yusuf, Ankur Gandhe, Alex Sokolov

VADOI: Voice-activity-detection overlapping inference for end-to-end long-form speech recognition
Jinhan Wang, Xiaosu Tong, Jinxi Guo, Di He, Roland Maas

Computer vision

ASD-transformer: Efficient active speaker detection using self and multimodal transformers
Gourav Datta, Tyler Etchart, Vivek Yadav, Varsha Hedau, Pradeep Natarajan, Shih-Fu Chang

Dynamically pruning SegFormer for efficient semantic segmentation
Haoli Bai, Hongda Mao, Dinesh Nair

Enhancing contrastive learning with temporal cognizance for audio-visual representation generation
Chandrashekhar Lavania, Shiva Sundaram, Sundararajan Srinivasan, Katrin Kirchhoff

Few-shot gaze estimation with model offset predictors
Jiawei Ma, Xu Zhang, Yue Wu, Varsha Hedau, Shih-Fu Chang

Visual representation learning with self-supervised attention for low-label high-data regime
Prarthana Bhattacharyya, Chenge Li, Xiaonan Zhao, István Fehérvári, Jason Sun

Federated learning

Federated learning challenges and opportunities: An outlook
Jie Ding, Eric Tramel, Anit Kumar Sahu, Shuang Wu, Salman Avestimehr, Tao Zhang

FL framework.png
The federated-learning scenario considered in "Federated learning challenges and opportunities: An outlook".

Learnings from federated learning in the real world
Christophe Dupuy, Tanya G. Roosta, Leo Long, Clement Chung, Rahul Gupta, Salman Avestimehr

Information retrieval

Contrastive knowledge graph attention network for request-based recipe recommendation
Xiyao Ma, Zheng Gao, Qian Hu, Mohamed Abdelhady

Keyword spotting

Unified speculation, detection, and verification keyword spotting
Geng-shen Fu, Thibaud Senechal, Aaron Challenner, Tao Zhang

Machine translation

Isometric MT: Neural machine translation for automatic dubbing
Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Natural-language understanding

ADVIN: Automatically discovering novel domains and intents from user text utterances
Nikhita Vedula, Rahul Gupta, Aman Alok, Mukund Sridhar, Shankar Ananthakrishnan

An efficient DP-SGD mechanism for large scale NLU models
Christophe Dupuy, Radhika Arava, Rahul Gupta, Anna Rumshisky

Paralinguistics

Confidence estimation for speech emotion recognition based on the relationship between emotion categories and primitives
Yang Li, Constantinos Papayiannis, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Multi-lingual multi-task speech emotion recognition using wav2vec 2.0
Mayank Sharma

Representation learning through cross-modal conditional teacher-student training for speech emotion recognition
Sundararajan Srinivasan, Zhaocheng Huang, Katrin Kirchhoff

Sentiment-aware automatic speech recognition pre-training for enhanced speech emotion recognition
Ayoub Ghriss, Bo Yang, Viktor Rozgic, Elizabeth Shriberg, Chao Wang

Personalization

Incremental user embedding modeling for personalized text classification
Ruixue Lian, Che-Wei Huang, Yuqing Tang, Qilong Gu, Chengyuan Ma, Chenlei (Edward) Guo

Signal processing

Deep adaptive AEC: Hybrid of deep learning and adaptive acoustic echo cancellation
Hao Zhang, Srivatsan Kandadai, Harsha Rao, Minje Kim, Tarun Pruthi, Trausti Kristjansson

Improved singing voice separation with chromagram-based pitch-aware remixing
Siyuan Yuan, Zhepei Wang, Umut Isik, Ritwik Giri, Jean-Marc Valin, Michael M. Goodwin, Arvindh Krishnaswamy

Sparse recovery of acoustic waves
Mohamed Mansour

Upmixing via style transfer: A variational autoencoder for disentangling spatial images and musical content
Haici Yang, Sanna Wager, Spencer Russell, Mike Luo, Minje Kim, Wontak Kim

Sound source localization

End-to-end Alexa device arbitration
Jarred Barber, Yifeng Fan, Tao Zhang

Speaker diarization/identification/verification

ASR-aware end-to-end neural diarization
Aparna Khare, Eunjung Han, Yuguang Yang, Andreas Stolcke

Improving fairness in speaker verification via group-adapted fusion network
Hua Shen, Yuguang Yang, Guoli Sun, Ryan Langman, Eunjung Han, Jasha Droppo, Andreas Stolcke

OpenFEAT: Improving speaker identification by open-set few-shot embedding adaptation with Transformer
Kishan K C, Zhenning Tan, Long Chen, Minho Jin, Eunjung Han, Andreas Stolcke, Chul Lee

Self-supervised speaker recognition training using human-machine dialogues
Metehan Cekic, Ruirui Li, Zeya Chen, Yuguang Yang, Andreas Stolcke, Upamanyu Madhow

Self-supervised speaker verification with simple Siamese network and self-supervised regularization
Mufan Sang, Haoqi Li, Fang Liu, Andrew O. Arnold, Li Wan

Spoken-language understanding

A neural prosody encoder for end-to-end dialogue act classification
Kai Wei, Dillon Knox, Martin Radfar, Thanh Tran, Markus Mueller, Grant P. Strimel, Nathan Susanj, Athanasios Mouchtaris, Maurizio Omologo

Multi-task RNN-T with semantic decoder for streamable spoken language understanding
Xuandi Fu, Feng-Ju Chang, Martin Radfar, Kai Wei, Jing Liu, Grant P. Strimel, Kanthashree Mysore Sathyendra

Tie your embeddings down: Cross-modal latent spaces for end-to-end spoken language understanding
Bhuvan Agrawal, Markus Mueller, Samridhi Choudhary, Martin Radfar, Athanasios Mouchtaris, Ross McGowan, Nathan Susanj, Siegfried Kunzmann

TINYS2I: A small-footprint utterance classification model with contextual support for on-device SLU
Anastasios Alexandridis, Kanthashree Mysore Sathyendra, Grant P. Strimel, Pavel Kveton, Jon Webb, Athanasios Mouchtaris

Text-to-speech

Cross-speaker style transfer for text-to-speech using data augmentation
Manuel Sam Ribeiro, Julian Roth, Giulia Comini, Goeric Huybrechts, Adam Gabrys, Jaime Lorenzo-Trueba

Distribution augmentation for low-resource expressive text-to-speech
Mateusz Lajszczak, Animesh Prasad, Arent van Korlaar, Bajibabu Bollepalli, Antonio Bonafonte, Arnaud Joly, Marco Nicolis, Alexis Moinet, Thomas Drugman, Trevor Wood, Elena Sokolova

Duration modeling of neural TTS for automatic dubbing
Johanes Effendi, Yogesh Virkar, Roberto Barra-Chicote, Marcello Federico

Neural speech synthesis on a shoestring: Improving the efficiency of LPCNET
Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Text-free non-parallel many-to-many voice conversion using normalising flows
Thomas Merritt, Abdelhamid Ezzerg, Piotr Biliński, Magdalena Proszewska, Kamil Pokora, Roberto Barra-Chicote, Daniel Korzekwa

VoiceFilter: Few-shot text-to-speech speaker adaptation using voice conversion as a post-processing module
Adam Gabrys, Goeric Huybrechts, Manuel Sam Ribeiro, Chung-Ming Chien, Julian Roth, Giulia Comini, Roberto Barra-Chicote, Bartek Perz, Jaime Lorenzo-Trueba

Time series forecasting

Robust nonparametric distribution forecast with backtest-based bootstrap and adaptive residual selection
Longshaokan Marshall Wang, Lingda Wang, Mina Georgieva, Paulo Machado, Abinaya Ulagappa, Safwan Ahmed, Yan Lu, Arjun Bakshi, Farhad Ghassemi

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.